人教A版 (2019)9.2 用样本估计总体优秀习题
展开新人教A版高中数学必修第二册课本教材目录
第六章 平面向量及其应用
6.1平面向量的概念 6.2平面向量的运算 6.3平面向量基本定理及坐标表示 6.4平面向量的应用
第七章 复数
7.1复数的概念 7.2复数的四则运算 7.3复数的三角表示
第八章 立体几何初步
8.1简单的立体图形 8.2立体图形的直观图 8.3简单几何体的表面积与体积
8.4空间点、直线、平面之间的位置关系 8.5空间直线、平面的平行 8.6空间直线、平面的垂直
第九章 统计
9.1随机抽样 9.2用样本估计总体 9.3统计分析案例 公司员工的肥胖情况调查分析
9.2 用样本估计总体(精讲)
考法一 总体取值规律的估计
【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
【举一反三】
1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:
用户用水量频数直方图 用户用水量扇形统计图
(1)此次抽样调查的样本容量是________;
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.
2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数.
3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.
(I)求a的值;
(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;
(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.
4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.
考法二 总体百分数的估计
【例2】(2020·天津和平区)已知一组数据为第百分位数是( )
A. B. C. D.
【举一反三】
1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( )
A.3 B.3.5 C.3.6 D.4
2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm),把这20名同学的身高数据从小到大排序:
148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0
158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0
则这组数据的第75百分位数是( )
A.163.0 B.164.0 C.163.5 D.164.5
3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )
A.7 B.7.5 C.8 D.9
考法三 总体集中趋势的估计
【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:
请根据图中所给数据,求:
(1)实数a的值;
(2)该企业网上销售日销售额的众数和中位数;
(3)该企业在统计时间段内网上销售日销售额的平均数.
【举一反三】
1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:
(Ⅰ)79.5-89.5这一组的频数、频率分别是多少?
(Ⅱ)估计这次数学竞赛的平均成绩是多少?
(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格).
2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(1)估计这次考试的众数m与中位数n(结果保留一位小数);
(2)估计这次考试的优秀率(80分及以上为及格)和平均分.
3.(2021·吉林市)某城市户居民的月平均用水量(单位:吨),以分组的频率分布直方图如图.
(1)求直方图中的值;并估计出月平均用水量的众数.
(2)求月平均用水量的中位数及平均数;
(3)在月平均用水量为,,,的四组用户中,用分层抽样的方法抽取22户居民,则应在这一组的用户中抽取多少户?
(4)在第(3)问抽取的样本中,从这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?
考点四 总体离散程度的估计
【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )
A. B.
C. D.
【举一反三】
1.(2020·全国高一)已知数据的平均数为,方差为,则,,…,的平均数和方差分别为( )
A.和 B.和
C.和 D.和
2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )
A.17.2,3.6 B.54.8,3.6 C.17.2,0.4 D.54.8,0.4
3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,,,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则,的值分别为( ).
A.10,11 B.10.5,9.5 C.10.4,10.6 D.10.5,10.5
4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对、两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,、两班学生的平均成绩分别为,,、两班学生成绩的方差分别为,,则观察茎叶图可知( )
A., B.,
C., D.,
高中数学人教A版 (2019)必修 第二册9.3 统计分析案例 公司员工课后作业题: 这是一份高中数学人教A版 (2019)必修 第二册9.3 统计分析案例 公司员工课后作业题,文件包含高中数学新教材同步讲义必修第二册93统计分析案例精讲教师版含解析docx、高中数学新教材同步讲义必修第二册93统计分析案例精讲学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
高中人教A版 (2019)10.3 频率与概率优秀同步测试题: 这是一份高中人教A版 (2019)10.3 频率与概率优秀同步测试题,文件包含高中数学新教材同步讲义必修第二册103频率与概率精讲教师版含解析docx、高中数学新教材同步讲义必修第二册103频率与概率精讲学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
高中数学人教A版 (2019)必修 第二册第九章 统计9.2 用样本估计总体优秀当堂达标检测题: 这是一份高中数学人教A版 (2019)必修 第二册第九章 统计9.2 用样本估计总体优秀当堂达标检测题,文件包含高中数学新教材同步讲义必修第二册92用样本估计总体精练教师版含解析docx、高中数学新教材同步讲义必修第二册92用样本估计总体精练学生版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。