中考数学考前冲刺专题《菱形》过关练习(含答案)
展开中考数学考前冲刺专题
《菱形》过关练习
一 、选择题
1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形
2.下列说法中正确的是( )
A.四边相等的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是菱形
C.对角线互相垂直的四边形是菱形
D.对角线互相平分的四边形是菱形
3.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD.
则下列结论:
①AD=BC; ②BD、AC互相平分; ③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
4.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于( )
A.4.5 B.5 C.6 D.9
5.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A.28° B.52° C.62° D.72°
7.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )
A.20m B.25m C.30m D.35m
8.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE的长是( )
A.2.4 B.4.8 C.7.2 D.10
9.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB为半径的弧交AD于点F,连接EF.若BF=6,AB=5,则四边形ABEF面积是( )
A.48 B.36 C.24 D.12
10.如图,已知在▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,AD=5,DC=4,则DA′的大小为( )
A.1 B. C. D.2
11.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是( )
A.8 B.16 C.8 D.16
12.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为( )
A.1 B. C.2- D.2﹣2
二 、填空题
13.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ,使ABCD成为菱形(只需添加一个即可)
14.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD的面积为 .
15.如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB= .
16.如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.
17.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为 .
18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF为 .
三、解答题
19.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.
求证:四边形OBEC是矩形.
20.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH.
求证:∠DHO=∠DCO.
21.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)将这个菱形沿x轴正方向平移,当顶点D落在反比例函数图象上时,求菱形平移距离.
22.如图在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
23.如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
24.如图,在▱ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
(1)求证:四边形DEBF是菱形;
(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置.
0.参考答案
1.C.
2.A
3.D
4.答案为:A.
5.B
6.C
7.C.
8.B
9.C
10.C
11.答案为:A.
12.C
13.答案为:OA=OC.
14.答案为:9.
15.答案为:22.5°.
16.答案为:45;
17.答案为:2.5;
18.答案为:6.
19.证明:∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
又∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
∴平行四边形OBEC是矩形.
20.证明:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°.
∵DH⊥AB于H,
∴∠DHB=90°.
在Rt△DHB中,OH=OB,
∴∠OHB=∠OBH.
又∵AB∥CD,
∴∠OBH=∠ODC.
∴∠OHB=∠ODC.
在Rt△COD中,∠ODC+∠OCD=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
21.【解答】解:(1)作DE⊥BO,DF⊥x轴于点F,,
∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5,
∴A点坐标为:(4,8),∴xy=4×8=32,∴k=32;
(2)∵将菱形ABCD向右平移,使点D落在反比例函数y=(x>0)的图象上,
∴DF=3,D′F′=3,∴D′点的纵坐标为3,∴3=,x=,∴OF′=,
∴FF′=﹣4=,∴菱形ABCD向右平移的距离为:.
22.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,
又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.
∴四边形ACDE是平行四边形.
(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD=5.
又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.
∴△ADE的周长为AD+AE+DE=5+5+8=18.
23.(1)证明:∵四边形ABCD是平行四边形,
∴AO=CO,
∵△EAC是等边三角形,
∴EA=EC,
∴EO⊥AC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,AC=8,
∴AO=CO=4,DO=BO,
在Rt△ABO中,BO==3,
∴DO=BO=3,
在Rt△EAO中,EO==4,
∴ED=EO﹣DO=4﹣3.
24.(1)证明:∵平行四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB=90°.
∵△ABD中,∠ADB=90°,E时AB的中点,
∴DE=AB=AE=BE.
同理,BF=DF,
∵平行四边形ABCD中,AB=CD,
∴DE=BE=BF=DF,
∴四边形DEBF是菱形;
(2)解:连接BF,
∵菱形DEBF中,∠DEB=120°,
∴∠EF=60°,
∴△BEF是等边三角形,
∵M是BF的中点,
∴EM⊥BF.
则EM=2.
即PF+PM的最小值是2.
中考数学考前冲刺专题《圆》过关练习(含答案): 这是一份中考数学考前冲刺专题《圆》过关练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学考前冲刺专题《相似》过关练习(含答案): 这是一份中考数学考前冲刺专题《相似》过关练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学考前冲刺专题《实数》过关练习(含答案): 这是一份中考数学考前冲刺专题《实数》过关练习(含答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。