![人教版八年级数学上册 第12章 《全等三角形》单元选择题必练题型(三)第1页](http://img-preview.51jiaoxi.com/2/3/5798670/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册 第12章 《全等三角形》单元选择题必练题型(三)第2页](http://img-preview.51jiaoxi.com/2/3/5798670/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册 第12章 《全等三角形》单元选择题必练题型(三)第3页](http://img-preview.51jiaoxi.com/2/3/5798670/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学人教版12.1 全等三角形同步达标检测题
展开
这是一份数学人教版12.1 全等三角形同步达标检测题,共13页。
1.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )
A.BC=BEB.AC=DEC.∠A=∠DD.∠ACB=∠DEB
2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE
3.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是( )
A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BAC
C.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC
4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
5.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A.1个B.2个C.3个D.4个
6.已知图中的两个三角形全等,则∠1等于( )
A.72°B.60°C.50°D.58°
7.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )
A.40°B.35°C.30°D.25°
8.一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是( )
A.ASAB.AASC.SASD.SSS
9.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )
A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D
10.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
A.SSSB.SASC.AASD.ASA
11.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=( )
A.3B.4C.5D.6
12.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是( )
A.SASB.SSSC.ASAD.AAS
13.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是( )
A.线段CD的中点
B.OA与OB的中垂线的交点
C.OA与CD的中垂线的交点
D.CD与∠AOB的平分线的交点
14.如图,已知∠1=∠2,则不一定能使△ABC≌△ABD的条件是( )
A.AC=ADB.BC=BDC.∠C=∠DD.∠3=∠4
15.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是( )
A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′
16.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )
A.三条高线的交点B.三条中线的交点
C.三条角平分线的交点D.三边垂直平分线的交点
17.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为( )
A.2B.3C.4D.5
18.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CDC.AM∥CND.∠M=∠N
19.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是( )
A.SSSB.SASC.AASD.HL
20.如图所示,已知OA=OB,OC=OD,AD、BC相交于点E,则图中全等三角形共有( )
A.2对B.3对C.4对D.5对
21.如图,DE⊥AC,BF⊥AC,垂足分别是E,F,且DE=BF,若利用“HL”证明△DEC≌△BFA,则需添加的条件是( )
A.EC=FAB.DC=BAC.∠D=∠BD.∠DCE=∠BAF
22.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,若BE=7,AB=3,则AD的长为( )
A.3B.5C.4D.不确定
23.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是( )
A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′
24.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为( )
A.6B.5C.4D.3
25.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE; ④AD=AB+CD,四个结论中成立的是( )
A.①②④B.①②③C.②③④D.①③
参考答案
1.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;
B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;
C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;
D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.
故选:B.
2.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选:D.
3.解:A、符合AAS,能判断△ABD≌△BAC;
B、符合ASA,能判断△ABD≌△BAC;
C、不能判断△ABD≌△BAC;
D、符合SSS,能判断△ABD≌△BAC.
故选:C.
4.解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD平分∠BAC,
∴DE=CD,
∴S△ABD=AB•DE=×10•DE=15,
解得DE=3,
∴CD=3.
故选:A.
5.解:∵AD是△ABC的中线,
∴BD=CD,又∠CDE=∠BDF,DE=DF,
∴△BDF≌△CDE,故④正确;
由△BDF≌△CDE,可知CE=BF,故①正确;
∵AD是△ABC的中线,
∴△ABD和△ACD等底等高,
∴△ABD和△ACD面积相等,故②正确;
由△BDF≌△CDE,可知∠FBD=∠ECD
∴BF∥CE,故③正确.
故选:D.
6.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.
∵图中的两个三角形全等,
∴∠1=∠2=58°.
故选:D.
7.解:∵∠B=80°,∠C=30°,
∴∠BAC=180°﹣80°﹣30°=70°,
∵△ABC≌△ADE,
∴∠DAE=∠BAC=70°,
∴∠EAC=∠DAE﹣∠DAC,
=70°﹣35°,
=35°.
故选:B.
8.解:这片碎玻璃的两个角和这两个角所夹的边确定,从而可根据“ASA”重新配一块与原来全等的三角形玻璃.
故选:A.
9.解:∵△ABC≌△CDE,AB=CD
∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D
∴第三个选项∠ACB=∠ECD是错的.
故选:C.
10.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.
故选:D.
11.解:在△ABE和△ACD中
,
∴△ABE≌△ACD,
∴AC=AB=5,
∴CE=AC﹣AE=5﹣2=3.
故选:A.
12.解:在△D′O′C′和△DOC中,
,
∴△D′O′C′≌△DOC(SSS),
∴∠D′O′C′=∠DOC.
则全等的依据为SSS.
故选:B.
13.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.
故选:D.
14.解:A、∵∠1=∠2,AB为公共边,若AC=AD,则△ABC≌△ABD(SAS),故本选项错误;
B、∵∠1=∠2,AB为公共边,若BC=BD,则不一定能使△ABC≌△ABD,故本选项正确;
C、∵∠1=∠2,AB为公共边,若∠C=∠D,则△ABC≌△ABD(AAS),故本选项错误;
D、∵∠1=∠2,AB为公共边,若∠3=∠4,则△ABC≌△ABD(ASA),故本选项错误;
故选:B.
15.解:
A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;
B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;
C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;
D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.
故选:B.
16.解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,
根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.
故选:C.
17.解:∵△ABC≌△DCB,
∴BD=AC=7,
∵BE=5,
∴DE=BD﹣BE=2,
故选:A.
18.解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;
B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;
C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;
D、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;
故选:A.
19.解:在Rt△OMP和Rt△ONP中,,
∴Rt△OMP≌Rt△ONP(HL),
∴∠MOP=∠NOP,
∴OP是∠AOB的平分线.
故选:D.
20.解:在△AOD和△BOC中,
∴△AOD≌△BOC(SAS);
∴∠A=∠B,
∵OA=OB,OC=OD,
∴AC=BD,
在△CAE和△ODBE中,
∴△CAE≌△DBE(AAS);
∴AE=BE,
在△AOE和△BOE中,
∴△AOE≌△BOE(SSS);
在△OCE和△ODE中,
∴△OCE≌△ODE(SSS).
故选:C.
21.解:∵DE⊥AC,BF⊥AC,
∴∠DEC=∠BFA=90°,
∵DE=BF,
∴当添加条件DC=BA时,可利用“HL”证明△DEC≌△BFA.
故选:B.
22.解:∵∠DCE=90°,
∴∠ACD+∠BCE=90°,
∵BE⊥AC,
∴∠CBE=90°,∠E+∠BCE=90°,
∴∠ACD=∠E,
在△ACD和△BCE中,
,
∴△ACD≌△BEC(AAS),
∴AD=BC,AC=BE=7,
∵AB=3,
∴BC=AC﹣AB=7﹣3=4.
故选:C.
23.解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;
B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;
C、若添加AC=A'C',不能进行全等的判定,故本选项正确;
D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;
故选:C.
24.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DC=DE=4,
∴BD=BC﹣CD=9﹣4=5.
故选:B.
25.解:过E作EF⊥AD于F,如图,
∵AB⊥BC,AE平分∠BAD,
∴Rt△AEF≌Rt△AEB
∴BE=EF,AB=AF,∠AEF=∠AEB;
而点E是BC的中点,
∴EC=EF=BE,所以③错误;
∴Rt△EFD≌Rt△ECD,
∴DC=DF,∠FDE=∠CDE,所以②正确;
∴AD=AF+FD=AB+DC,所以④正确;
∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.
故选:A.
相关试卷
这是一份【期末考前必练】2022-2023学年人教版数学八年级上册期末考点必刷题:专练09 全等三角形大题(15题),文件包含期末考前必练2022-2023学年人教版数学八年级上册期末考点必刷题专练09全等三角形大题15题解析版docx、期末考前必练2022-2023学年人教版数学八年级上册期末考点必刷题专练09全等三角形大题15题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份初中人教版第十二章 全等三角形12.2 三角形全等的判定达标测试,文件包含第12章全等三角形122全等三角形的判定选择题专练-2021-2022学年八年级上册数学把关题分类专练人教版解析版doc、第12章全等三角形122全等三角形的判定选择题专练-2021-2022学年八年级上册数学把关题分类专练人教版原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份初中数学人教版八年级上册第十二章 全等三角形12.1 全等三角形课后复习题,文件包含第12章全等三角形121全等三角形选择题专练2021-2022学年八年级上册数学把关题分类专练人教版解析版doc、第12章全等三角形121全等三角形选择题专练2021-2022学年八年级上册数学把关题分类专练人教版原卷版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)