初中数学苏科版八年级上册第一章 全等三角形综合与测试单元测试综合训练题
展开一、选择题
1.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A.20°B.30°C.35°D.40°
2.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是( )
A.AASB.SASC.ASAD.SSS
3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D
4.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( )
A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA
5.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.330°B.315°C.310°D.320°
6.如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R、S,下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS,其中正确的是( )
A.①②③B.①C.①②D.①③
7.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有( )
A.5对B.4对C.3对D.2对
8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11B.5.5C.7D.3.5
二、填空题
9.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有 对.
10.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .
11.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件 ,使△ABC≌△DEF.
12.如图,已知∠1=∠2=90°,AD=AE,那么图中有 对全等三角形.
13.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为 度.
14.在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是 .
15.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第 块去配,其依据是根据定理 (可以用字母简写)
16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为 cm.
17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.
18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.
三、解答题(共64分)
19.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.
(1)求角F的度数与DH的长;
(2)求证:AB∥DE.
20.如图,已知在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.
21.如图,点B、C、D、E在同一条直线上,已知AB=FC,AD=FE,BC=DE,探索AB与FC的位置关系?并说明理由.
22.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.
23.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;
(2)求出∠FHG的度数.
24.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
(1)求证:AE=CD;
(2)若AC=12cm,求BD的长.
25.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列问题:
(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为 ,数量关系为 .
(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
参考答案
1.B.
2.D.
3.C.
4.D.
5.B.
6.C.
7.B.
8.B.
9.2对.
10.答案为:20.
11.答案为:AB=DE.
12.答案为3.
13.答案为:65.
14.答案是:①②④.
15.答案为:③; ASA.
16.12.
17.答案为:45.
18.答案为:5或10.
19.解:(1)∵∠A=85°,∠B=60°,
∴∠ACB=180°﹣∠A﹣∠B=35°,
∵△ABC≌△DEF,AB=8,
∴∠F=∠ACB=35°,DE=AB=8,
∵EH=2,
∴DH=8﹣2=6;
(2)证明:∵△ABC≌△DEF,
∴∠DEF=∠B,
∴AB∥DE.
20.证明:∵AD平分∠EDC,
∴∠ADE=∠ADC,
在△ADE和△ADC中,
,
∴△ADE≌△ADC (SAS),
∴∠E=∠C,
又∵∠E=∠B,
∴∠B=∠C,
∴AB=AC.
21.解:AB与FC位置关系是:AB∥FC,理由为:
证明:∵BC=DE(已知),
∴BC+CD=DE+CD(等式的基本性质),即BD=CE,
在△ABD和△FCE中,
,
∴△ABD≌△FCE(SSS),
∴∠B=∠FCE(全等三角形的对应角相等),
∴AB∥FC(同位角相等,两直线平行).
22.证明:∵∠ACB=90°,AC=BC,
∴∠ACD+∠BCE=90°,
又∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,而∠ACD+∠DAC=90°,
∴∠BCE=∠CAD.
在△ADC和△CEB中
∵,
∴△ADC≌△CEB(AAS).
∴AD=CE,DC=EB.
又∵DE=DC+CE,
∴DE=EB+AD.
23.(1)证明:∵在△CBF和△DBG中,
,
∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:∵△CBF≌△DBG,
∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,
△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,
∴∠DHF=∠CBF=60°,
∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.
24.(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,
且BC=CA,
在△DBC和△ECA中,
∵
∴△DBC≌△ECA(AAS).
∴AE=CD.
(2)解:由(1)得AE=CD,AC=BC,
在Rt△CDB和Rt△AEC中
,
∴Rt△CDB≌Rt△AEC(HL),
∴BD=CE,
∵AE是BC边上的中线,
∴BD=EC=BC=AC,且AC=12cm.
∴BD=6cm.
25.解:(1)∵四边形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(SAS),
∴CF=BD,
∴∠B=∠ACF,
∴∠B+∠BCA=90°,
∴∠BCA+∠ACF=90°,
即CF⊥BD;
故答案为:垂直,相等;
(2)当点D在BC的延长线上时①的结论仍成立.
理由:∵四边形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD﹣∠DAC=∠CAF﹣∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(SAS),
∴CF=BD,
∴∠B=∠ACF,
∴∠B+∠BCA=90°,
∴∠BCA+∠ACF=90°,
即CF⊥BD.
初中数学苏科版八年级上册第一章 全等三角形综合与测试单元测试课堂检测: 这是一份初中数学苏科版八年级上册第一章 全等三角形综合与测试单元测试课堂检测,共14页。试卷主要包含了下列说法等内容,欢迎下载使用。
苏科版八年级上册第一章 全等三角形综合与测试巩固练习: 这是一份苏科版八年级上册第一章 全等三角形综合与测试巩固练习,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学苏科版第一章 全等三角形综合与测试单元测试巩固练习: 这是一份数学苏科版第一章 全等三角形综合与测试单元测试巩固练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。