人教版八年级下册18.2.2 菱形精品ppt课件
展开1.(十堰中考)菱形不具备的性质是( )A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( )A.1 cm B.2 cm C.3 cm D.4 cm
3.(2019·河北)如图,菱形ABCD中,∠D=150°,则∠1=( )A.30° B.25° C.20° D.15°4.(2019·十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为____.
5.(2019·岳阳)如图,在菱形ABCD中,点E,F分别为AD,CD边上的点,DE=DF,求证:∠1=∠2.
6.(练习2变式)菱形的两条对角线长分别是5和12,则此菱形的边长是____,面积是____.7.如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为______.
8.(例3变式)如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.
13.(2019·东营)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是___________.
14.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.解:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形,∴OE=CD,∵四边形ABCD是菱形,∴CD=BC,∴OE=BC
15.(2019·聊城)如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA) (2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF
15.(2019·云南)如图,四边形ABCD中,对角线AC,BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB∶∠ODC=4∶3,∴∠AOB∶∠ABO=4∶3,∴∠BAO∶∠AOB∶∠ABO=3∶4∶3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°-54°=36°
16.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.
解:(1)连接AC,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵点E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∵∠AEF=60°,∴∠FEC=90°-60°=30°,∵∠C=180°-∠B=120°,∠C+∠EFC+∠FEC=180°,∴∠EFC=30°,∴∠FEC=∠EFC,∴CE=CF,∵BC=CD,∴BC-CE=CD-CF,即BE=DF
初中数学人教版八年级下册18.2.2 菱形精品ppt课件: 这是一份初中数学人教版八年级下册18.2.2 菱形精品ppt课件,共23页。PPT课件主要包含了平行四边形,归纳总结,菱形的性质,相等的线段,相等的角,等腰三角形有,直角三角形有,全等三角形有,菱形ABCD中,菱形的面积等内容,欢迎下载使用。
初中18.2.2 菱形教课内容课件ppt: 这是一份初中18.2.2 菱形教课内容课件ppt,共22页。
初中数学人教版八年级下册18.2.2 菱形一等奖课件ppt: 这是一份初中数学人教版八年级下册18.2.2 菱形一等奖课件ppt,文件包含1822菱形第1课时菱形的性质pptx、1822菱形第1课时菱形的性质教案doc、1822菱形第1课时菱形的性质导学案doc等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。