初中数学人教版(2024)七年级上册(2024)整式教案设计
展开
这是一份初中数学人教版(2024)七年级上册(2024)整式教案设计,共6页。教案主要包含了复习概念等内容,欢迎下载使用。
教材
分析
整式部分是由数到式的重要标志,第一节沿着数式通性的主线,采用类比的数学思想,由特殊到一般的过程,从实际问题出发,展开单项式、多项式等重点概念。完成了学生由数到字母表示实际问题中量与量的数量关系的能力的迁移。为学习整式的加减运算打下了基础,铲除了学生将来运用方程、不等式建模解决实际问题的障碍。让学生体会整式的概念来源于实际,同时也可以让学生看到整式在解决实际问题中所起的作用,感受由实际问题抽象成数学问题的过程,体会到在表示数量关系中整式比数字更具一般性的道理。
教学
目标
1.掌握单项式、多项式的概念,进而理解整式的概念。
2. 掌握单项式的系数、次数;多项式的项,次数的概念 ,并能熟练地说出多项式的项和次数。
教学重点
单项式、多项式、整式的概念
教学难点
整式的应用
教学准备
多媒体课件
教学过程
设计意图
-3
O
4
14
24
8
T/℃
t/时
一、复习概念
单项式概念:
问题1: 什么叫单项式?应注意什么问题呢?
单项式:数或字母的乘积。
注意:
(1)积的运算
(2))可以含有除以数的运算,不能含有除以字母的运算.
(3)单独的一个数或一个字母也是单项式
(4)单项式中字母可能一个或多个.
问题2:怎么确定一个单项式的系数和次数呢?
2
1
n+1
3
-1
63
1
π
1
-3x3y4
-3
7
y
多项式概念:
问题1:什么叫多项式?
多项式:几个单项式的和
问题2:什么是多项式的项、多项式的次数、常数项?
π
x3
2x
18
3
0
3
2
2
2
三次三项式
二次二项式
-πr2
X3+2x+18
1
方法归纳:
(1)多项式的各项应包括它前面的符号
(2)多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前面的符号
(3)要确定一个多项式的次数,先要确定此多项式中各项的次数,然后找次数最高的
(4)一个多项式的最高次项可以不唯一
整式的概念:
单项式与多项式统称为整式
概念辨析:
下列整式中哪些是单项式?哪些是多项式?
是单项式的指出系数和次数,是多项式的指出项和次数
x4+y2
-x
πm2n
6xy+1
2x2-x-5
整式的应用:
用含有字母的式子表示数量关系:
小明在银行存a元钱,银行的月利率为0.25%,利息税为20%, 6个月后小明可得利息
元.
(2)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则最后的单价是 元
(3)某班有a名学生,现把一批图书分给全班学生阅读,如果每人分4本, 还缺25本,则这批图书共 本;
(4)张老板以每斤a元的单价买进苹果100斤.现以每斤比单价多两成的价格卖出70斤后,再以每斤比单价低b元的价格将剩下的30斤卖出,全部苹果共卖 元?
归纳总结:列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言.
定 义
归纳小结:
单项式
系 数
单项式的次数
整式
定 义
多项式的项
多项式
多项式的次数
提升练习:
1.下列说法错误的是( )
A.2x²-3xy-1是二次三项式
B.-x+1不是单项式
C.-2πxy²的次数是4
D.2a²b+ab-1的最高次项是2a²b
2.下列说法正确的是( )
A.单项式x的系数是0
B.单项式﹣32xy²的系数是﹣3,次数是5
C.多项式x²+2x的次数是2
D.单项式﹣5的次数是1
典例精讲1:
已知整式(a﹣1)x3﹣2x﹣(a+3).若它是关于x的一次二项式,求a的值并写出常数项;
变式训练:
对于多项式(n-1)x(m+2)-3x2+2x.若n=2,且该多项式是关于x的三次三项式,求m的值
典例精讲2:
某公园的门票价格是:成人10元/张;学生5元/张.
(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?
(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?
变式训练:
一个花坛的形状如图所示,它的两端是半径相等的半圆,求:
(1)花坛的周长L;
(2)花坛的面积S.
用字母表示数量关系
课堂小结:
单项式
实际问题
列式
整式
多项式
点播:表示数量关系,由数到字母是数学的一大进步
作业
1.下列结论中正确的是( )
A.的系数是 ,次数是4 B.单项式m的次数为1,没有系数
C.单项式﹣xy2z的系数为﹣1,次数为4 D.多项式2x2+xy﹣3是四次三项式
2.用代数式表示“m的3倍与n的差的平方”,正确的是( )
A.(3m-n)2 B.3m-n2
C.(m-3n)2 D.3(m-n)2
3.多项式xm+(m+n)x2-3x+5是关于x的三次四项式,且二次项系数是-2,则 m=___ n= ___
4.按一定规律排列的单项式:2a,-4a2,8a3,-16a4,32a5,-64a6,⋯,按此规律,可以得到9个单项式是_ _;第10个单项式是_____;第n个单项式是______.
复习概念,加深理解
理解和掌握单项式的系数、次数
复习概念,加深理解
理解和掌握多项式的项、次数
提升对多项式概念的理解能力
应用整式解决实际问题
积
梳理知识要点
高
和
和
反馈学习效果
典例精讲,增加学生解题直接经验,增进对概念的强化理解
再次梳理知识点,进一步体会数式通性
课后巩固
相关教案
这是一份初中数学整式教学设计,共10页。
这是一份初中数学人教版(2024)七年级上册(2024)整式第1课时教案,共4页。教案主要包含了方法总结等内容,欢迎下载使用。
这是一份人教七年级数学上册教案 第四章 4.1整式,共6页。教案主要包含了教学与建议等内容,欢迎下载使用。
相关教案 更多
- 1.电子资料成功下载后不支持退换,如发现资料有内容错误问题请联系客服,如若属实,我们会补偿您的损失
- 2.压缩包下载后请先用软件解压,再使用对应软件打开;软件版本较低时请及时更新
- 3.资料下载成功后可在60天以内免费重复下载
免费领取教师福利

