所属成套资源:(寒假)浙教版数学七年级寒假讲练测 (2份,原卷版+解析版)
(寒假)浙教版数学七年级寒假讲练测第03讲 平行线的性质(2份,原卷版+解析版)
展开
这是一份(寒假)浙教版数学七年级寒假讲练测第03讲 平行线的性质(2份,原卷版+解析版),文件包含寒假浙教版数学七年级寒假讲练测第03讲平行线的性质原卷版doc、寒假浙教版数学七年级寒假讲练测第03讲平行线的性质解析版doc等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
【学习目标】
1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;
2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;
【基础知识】
一、平行线的性质
性质1:两条平行线被第三条直线所截,同位角相等;简称:两直线平行,同位角相等;
性质2:两条平行线被第三条直线所截,内错角角相等;简称:两直线平行,内错角相等;
性质3:两条平行线被第三条直线所截,同旁内角互补;简称:两直线平行,同旁内角互补.
要点:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提 “两直线平行”.
(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.
二、两条平行线的距离
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线
的距离.
要点:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.
(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.
【考点剖析】
例1.如图,已知AB∥CD,∠1=56°,则∠2的度数是( )
A.34°B.56°C.65°D.124°
例2.如图,点A、D在射线AE上,直线ABCD,∠CDE=140°,那么∠A的度数为( )
A.140°B.60°C.50°D.40°
例3.如图,已知ABCD,∠1=120°,则∠A的度数为( )
A.120°B.110°C.60°D.70°
例4.如图,则下面结论中正确的是( )
A.B.C.D.
例5.如图,点D在BA的延长线上,AE是∠DAC的平分线且,若,则∠C的大小为( )
A.30°B.60°C.80°D.120°
例6.如图,,点在直线上,且,,那么( )
A.B.C.D.
例7.与是内错角,,则( )
A. 40B. 140
C. 40 或 140D. 的大小不确定
例8.将一副三角板()按如图所示方式摆放,使得,则等于( )
A.B.C.D.
例9.如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为( )
A.52°B.54°C.64°D.69°
例10.如图所示,已知,,,的度数是( )
A.B.C.D.
例11.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=65°,则∠2的度数是( )
A.122.5°B.123°C.123.5°D.124°
例12.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=36°,则∠2等于( )
A.36°
B.44°
C.54°
D.64°
例13.如果一个角的两边分别平行于另一个角的两边,那么这两个角( )
A.相等B.互补C.相等或互补D.以上结论都不对
例14.如图,若,,则:①;②;③平分;④;⑤,其中正确的结论是
A.1个B.2个C.3个D.4个
例15.如图,中,是的平分线,,则图中能用字母表示的相等的角的对数有( )
A.3对B.4对C.5对D.6对
例16.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1);(2);(3);(4),其中正确的个数是( )
A.1B.2C.3D.4
例17.如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是( )
A.120°B.125°C.135°D.145°
例18.已知,如图,,则、、之间的关系为( )
A.B.
C.D.
例19.如图,,则下列等式中正确的是( )
A.B.
C.D.
例20.如图,DH//EG//BC,DC//EF,那么与∠EFB相等的角(不包括∠EFB)的个数为( )
A.2个B.3个C.4个D.5个
例21.如图,,A、 B为直线上两点,C、D为直线上两点,则与的面积大小关系是( )
A.
B.
C.
D.不能确定
例22.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是( )
A.60°B.80°C.100°D.120°
例23.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )
A.先右转 60°,再左转 120°B.先左转 120°,再右转 120°
C.先左转 60°,再左转 120°D.先右转 60°,再右转 60°
例24.如图,则与的数量关系是( )
A.B.
C.D.
例25.如图,在三角形中,点D、E分别在上,连接,且,,若,则的度数为______________.
例26.如图,的平分线交于点F,交的延长线于点E,.求证:.
请将下面的证明过程补充完整:
证明:∵,
∴①____________,(理由:②____________)
∵平分,
∴③____________.(理由:④____________)
∴.(理由:⑤____________)
∵,
∴⑥____________.(理由:⑦____________)
∴.
∴.
例27.如图,点E、F分别是上的点,连接,分别交于点G、H,若,,求证:.
例28.如图,点D,E,G分别在,,上,连接,点F在上,连接,,已知.
(1)试判断与的关系,并说明理由;
(2)若,求的度数.
【真题演练】
一、单选题
1.(2022·西藏·中考真题)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为( )
A.46°B.90°C.96°D.134°
2.(2022·陕西·中考真题)如图,.若,则的大小为( )
A.B.C.D.
3.(2022·湖北襄阳·中考真题)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为( )
A.30°B.40°C.60°D.70°
4.(2022·四川达州·中考真题)如图,,直线分别交,于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若,则等于( )
A.15°B.25°C.35°D.45°
5.(2020·江苏南通·中考真题)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是( )
A.36°B.34°C.32°D.30°
二、填空题
6.(2022·山东济宁·中考真题)如图,直线l1,l2,l3被直线l4所截,若l1l2,l2l3,∠1=126°32',则∠2的度数是___________.
7.(2014·福建南平·中考真题)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( )
8.(2011·山东日照·中考真题)两个角的两边分别平行,其中一个角是60°,则另一个角是 _____度.
三、解答题
9.(2022·湖北武汉·中考真题)如图,在四边形中,,.
(1)求的度数;
(2)平分交于点,.求证:.
【过关检测】
一、单选题
1.如图,直线a、b被直线c所截,,若,则等于( )
A.120B.130C.140D.150
2.下列图形中,由,能得到的是( )
A. B.
C. D.
3.如图,直线a、b被直线c、d所截,若,,,则的度数是( )
A.105°B.115°C.125°D.135°
4.如图,,直线EF分别交AB,CD于点E,F,EG平分∠BEF,交CD于点G,若,则∠EGF的度数是( )
A.55°B.50°C.45°D.40°
5.如图,,,,则等于( )
A.B.C.D.
6.如图,∠ACB=90°,直线lmn,BC与直线n所夹角为25°,则∠a等于( )
A.25°B.55°C.65°D.78°
7.如图,,平分,交于点D.若,则的度数为( )
A.B.C.D.
8.如图,小明在笔记本的横格线中画了两条线段、,点、、、都在格线上,是上一点.若,,则的度数为( )
A.32°B.34°C.36°D.38°
9.如图,直线ABCD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为( )
A.26°B.30°C.32°D.36°
10.如图,AB∥CD,点E,P在直线AB上(P在E的右侧),点G在直线CD上,EF⊥FG,垂足为F,M为线段EF上的一动点,连接GP,GM,∠FGP与∠APG的角平分线交与点Q,且点Q在直线AB,CD之间的区域,下列结论:①∠AEF+∠CGF=90°;②∠AEF+2∠PQG=270°;③若∠MGF=2∠CGF,则3∠AEF+∠MGC=270°;④若∠MGF=n∠CGF,则∠AEF∠MGC=90°.正确的个数是( )
A.4B.3C.2D.1
二、填空题
11.如图,直线,,则的度数是______.
12.如图、已知,,则的度数为___________.
13.如图,直线ab,三角板的直角顶点放在直线b上,若∠1=40°,则∠2=_______°.
14.如图,AD是△ABC的角平分线,DEAC,DE交AB于点E,DFAB,DF交AC于点F,图中∠1与∠2的关系是_________.
15.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=83°,要使,直线OD绕点O按逆时针方向至少旋转________度.
16.如图,于点C,交于点B,若,则的度数是_______度.
17.如图所示,已知,∶∶∶∶,则______.
18.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为_____度.(用n来表示)
三、解答题
19.完成下面的证明:已知:如图,点D,E,F分别是三角形的边 ,,上的点,且DE∥BA,DF∥CA.
求证:.
证明:∵DE∥BA
∴_______=_______( )
∵DF∥CA
∴_______=________( )
∴
20.如图,直线MN与直线AB、CD相交于点E、F,已知,.求∠2的度数.
21.已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;
(1)求证:DE∥BA.
(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.
22.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
证明:∵∠BAP+∠APD=180°(已知),
∴______∥______(______),
∴∠BAP=______(______),
又∵∠1=∠2(已知),
∴∠FPA=______.
∴______∥______(______),
∴∠E=∠F(______).
23.如图,点E、F分别是上的点,连接,分别交于点G、H,若,,求证:.
24.如图,在中,,.
(1)求证:;
(2)若,,求的度数.
25.如图,点,在线段的异侧,点,分别是线段,上的点,已知,.
(1)求证:;
(2)若,求证:;
(3)在(2)的条件下,若,求的度数.
26.如图,,点P为AB上方一点,E在直线AB上.
(1)如图1,求证:∠P=∠PEB-∠C;
(2)如图2,点F为直线CD上一点,∠PEB、∠CFP的角平分线所在直线交于点Q,求∠P与∠Q的数量关系;
(3)如图3,N为AB、CD之间一点,且在∠CPE内部,∠EPN=n∠CPN、∠DCN=n∠PCN,当2∠CNP-∠PEA=180°恒成立时,n= .
A.45°
B.60°
C.90°
D.180°
相关试卷
这是一份(寒假)浙教版数学七年级寒假讲练测第02讲 平行线的判定(2份,原卷版+解析版),文件包含寒假浙教版数学七年级寒假讲练测第02讲平行线的判定原卷版doc、寒假浙教版数学七年级寒假讲练测第02讲平行线的判定解析版doc等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份(寒假)浙教版数学七年级寒假讲练测第01讲 平行线 同位角、内错角、同旁内角(2份,原卷版+解析版),文件包含寒假浙教版数学七年级寒假讲练测第01讲平行线同位角内错角同旁内角原卷版doc、寒假浙教版数学七年级寒假讲练测第01讲平行线同位角内错角同旁内角解析版doc等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份(寒假)浙教版数学八年级寒假讲练第11讲 一元二次方程的应用(2份,原卷版+解析版),文件包含寒假浙教版数学八年级寒假讲练第11讲一元二次方程的应用原卷版doc、寒假浙教版数学八年级寒假讲练第11讲一元二次方程的应用解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。