所属成套资源:人教版八年级【微专题】2022-2023学年八年级数学上册提分精练
- 专题01 三角形的高线和角分线结合-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版) 试卷 1 次下载
- 专题02 与三角形中线有关的面积问题-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题04 多边形截角多算少算角问题-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题06 两外角平分线问题-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版) 试卷 0 次下载
- 专题07 与三角形角度有关的新定义问题-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版) 试卷 0 次下载
专题03 三角形折叠求角-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版)
展开
这是一份专题03 三角形折叠求角-【微专题】2022-2023学年八年级数学上册常考点微专题提分精练(人教版),文件包含八年级数学上册专题03三角形折叠求角原卷版docx、八年级数学上册专题03三角形折叠求角解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专题03三角形折叠求角类型一 三角形折叠1.如图,在折纸活动中,小明制作了一张三角形纸片(即),点、分别在边、上,将沿着折叠压平后点与重合,若,则 ( )A. B. C. D.2.如图,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则∠A与∠1+∠2之间有始终不变的关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3A=∠1+∠2 D.3∠A=2(∠1+∠2)3.已知:如图所示,将△ABC的∠C沿DE折叠,点C落在点C'处,设 ∠AEC′=β,∠BDC'=γ,则下列关系式成立的是( )A.2α=β+γ B.α=β+γ C.α+β+γ=180° D.α+β=2γ4.如图,将△ABC沿着DE翻折,使B点与B'点重合,若∠1+∠2=80°,则∠B的度数为( )A.20° B.30° C.40° D.50°5.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为( )A.80° B.90° C.100° D.110°6.如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部时,测量得∠1=70°,∠2=132°,则∠A为( )A.40° B.22° C.30° D.52°7.如图所示,把沿直线翻折后得到,如果,那么___度.8.如图,把ABC纸片沿DE折叠,使点B落在图中的B处,设EC1,DA2若25,则21=______ 类型二 多边形折叠9.如图,将四边形纸片ABCD沿EF折叠,点A落在A1处,若∠1+∠2=90°,则∠A的度数是( )A.45° B.40° C.35° D.30°10.如图所示,在四边形纸片ABCD中,∠A=80°,∠B=70°,将纸片沿着MN折叠,使C,D分别落在直线AB上的,处,则∠+∠等于( )A.50° B.60° C.70° D.80°11.如图所示,将三角形纸片ABC沿DE折叠,使点B落在点B′处,若EB′恰好与BC平行,且∠B=80°,则∠CDE=_____°. 12.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=102°,则∠A的度数是______. 13.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,∠3的度数_____度14.利用折纸可以作出角平分线,如图1则为的平分线,如图2、图3,折叠长方形纸片,,均是折痕,折叠后,点落在点,点落在点,连接.①如图2,若点恰好落在上,且,则__________;②如图3,当点在的内部时,连接,若,,求的度数为__________.类型三 多次折叠15.如图所示,把一个三角形纸片ABC顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A.180° B.270° C.360° D.无法确定16.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为( )A.49° B.50° C.51° D.52°17.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.18.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角.19.直线与直线垂直相交于,点在射线上运动,点在射线上运动,连接.(1)如图1,已知,分别是和角的平分线,①点,在运动的过程中,的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出的大小.②如图2,将沿直线折叠,若点落在直线上,记作点,则_______;如图3,将沿直线折叠,若点落在直线上,记作点,则________.(2)如图4,延长至,已知,的角平分线与的角平分线交其延长线交于,,在中,如果有一个角是另一个角的倍,求的度数.