- 浙教版 数学 七下 期中测试卷(困难) 试卷 0 次下载
- 浙教版 七下 期末检测卷 A卷 试卷 0 次下载
- 浙教版 数学 七下 杭州萧山区 期末检测卷 试卷 1 次下载
- 浙教版 数学 杭州市拱墅区2022学年第二学期七下检测卷 试卷 0 次下载
- 浙教版 数学 七下 杭州市上城区期末检测卷 (无答案) 试卷 0 次下载
人教版 数学 八上 第十一章《三角形》单元综合测试卷
展开答案
一、选择题
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | A | B | C | C | B | D | C | D | C | C |
二、填空题
11.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,
故答案为:30°.
12.解:∵管理员走过一圈正好是三角形的外角和,
∴从出发到回到原处在途中身体转过360°.
故答案为:360.
13.解:∵BE∥AD,
∴∠ABE=∠BAD=20°,
∵BE平分∠ABC,
∴∠EBC=∠ABE=20°,
∵∠C=90°,
∴∠BEC=70°,
∴∠AEB=110°,
故答案为:110.
14.100°
15.92°
16.解:∵∠BAD=80°,AB=AD=DC,
∴∠ABD=∠ADB=50°,
由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=130°,
又∵AD=DC,
∴∠C=∠DAC=(180°﹣∠ADC)=25°,
∴∠C=25°.
17.解:根据题意,机器人所走过的路线是正多边形,
∴边数n=360°÷a°,
走过的路程最短,则n最小,a最大,
n最小是3,a°最大是120°.
故答案为:120.
18.②③④.
三、解答题
19.解:∵BE平分∠ABC,
∴∠ABC=2∠ABE=2×25°=50°,
∵AD是BC边上的高,
∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,
∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
20..解:(1)360°×=1980°.
即这个多边形的内角和为1980°.
(2)设该多边形的边数为n,
则(n-2)×180°=1980°,
解得n=13.
即这个多边形的边数为13.
21.解:∵∠ADB=∠DBC+∠ACB,
∴∠DBC=∠ADB-∠ACB=97°-60°=37°.
∵BD是∠ABC的平分线,
∴∠ABC=74°,
∴∠A=180°-∠ABC-∠ACB=46°.
∵CE是AB边上的高,
∴∠AEC=90°,
∴∠ACE=90°-∠A=44°.
22.
【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;
(2)①根据偶数的定义,以及x的取值范围即可求解;
②利用等腰三角形的判定方法得出即可.
【解答】解:(1)因为a=4,b=6,
所以2<c<10.
故周长x的范围为12<x<20.
(2)①因为周长为小于18的偶数,
所以x=16或x=14.
当x为16时,c=6;
当x为14时,c=4.
②当c=6时,b=c,△ABC为等腰三角形;
当c=4时,a=c,△ABC为等腰三角形.
综上,△ABC是等腰三角形.
【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c的取值范围是解题关键.
23.
【分析】(1)由∠ABC、∠ACB的度数结合三角形内角和定理,可求出∠BAC的度数,再根据角平分线的性质可求出∠BAE的度数;
(2)利用三角形的外角性质可求出∠AEB的度数,结合∠ADE=90°即可求出∠DAE的度数.
【解答】解:(1)∵∠ABC=40°,∠ACB=80°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=60°.
∵AE平分∠BAC,
∴∠BAE=∠BAC=30°.
(2)∵∠CAE=∠BAE=30°,∠ACB=80°,
∴∠AEB=∠CAE+∠ACB=110°,
∵AD是BC边上的高,
∴∠ADE=90°,
∴∠DAE=∠AEB﹣∠ADE=20°.
【点评】本题考查了三角形的外角性质、角平分线的性质以及三角形内角和定理,解题的关键是:(1)利用三角形内角和定理求出∠BAC的度数;(2)牢记三角形的一个外角等于和它不相邻的两个内角的和.
24.
解:(1)如图,连接PC,
由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠DPE=∠α=50°,∠C=90°,
∴∠1+∠2=50°+90°=140°,
故答案为:140°;
(2)连接PC,
由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠C=90°,∠DPE=∠α,
∴∠1+∠2=90°+∠α;
(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,
∴∠2﹣∠1=90°+∠α;
如图2,∠α=0°,∠2=∠1+90°;
如图3,∠2=∠1﹣∠α+∠C,
∴∠1﹣∠2=∠α﹣90°.