所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
展开这是一份四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类,共30页。试卷主要包含了两点,三点,其对称轴为x=2,两点,直线x=3与x轴交于点C等内容,欢迎下载使用。
四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
一.二元一次方程组的应用(共1小题)
1.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
二.分式方程的应用(共1小题)
2.(2023•泸州)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
(1)该商场节后每千克A粽子的进价是多少元?
(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
三.反比例函数与一次函数的交点问题(共1小题)
3.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.
(1)求一次函数的解析式;
(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.
四.反比例函数综合题(共2小题)
4.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.
(1)求b的值;
(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.
5.(2023•泸州)如图,在平面直角坐标系xOy中,直线l:y=kx+2与x,y轴分别相交于点A,B,与反比例函数y=(x>0)的图象相交于点C,已知OA=1,点C的横坐标为2.
(1)求k,m的值;
(2)平行于y轴的动直线与l和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.
五.二次函数综合题(共3小题)
6.(2023•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C(0,6)三点,其对称轴为x=2.
(1)求该抛物线的解析式;
(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.
①当CD=CE时,求CD的长;
②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.
7.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
(1)求证:∠ACB=90°;
(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
①求DE+BF的最大值;
②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.
8.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
六.平行四边形的性质(共1小题)
9.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.
七.切线的性质(共2小题)
10.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
(1)求证:∠ACF=∠B;
(2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.
11.(2023•泸州)如图,AB是⊙O的直径,AB=2,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O的切线交AB的延长线于点F,连接BC.
(1)求证:BC平分∠DCF;
(2)G为上一点,连接CG交AB于点H,若CH=3GH,求BH的长.
八.圆的综合题(共1小题)
12.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
九.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•泸州)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:的斜坡AB前进20m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,计算结果用根号表示,不取近似值).
一十.解直角三角形的应用-方向角问题(共2小题)
14.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
15.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
(1)求观测点B与C点之间的距离;
(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
参考答案与试题解析
一.二元一次方程组的应用(共1小题)
1.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
【答案】见试题解答内容
【解答】解:(1)设1辆A货车一次可以运货x吨,1辆B货车一次可以运货y吨,
根据题意得:,
解得:,
答:1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨;
(2)方法一:设A货车运输m吨,则B货车运输(190﹣m)吨,设总费用为w元,
则:w=500×+400×
=25m+
=25m﹣m+
=﹣m+,
∵﹣<0,
∴w随m的增大而减小.
∵A、B两种货车均满载,
∴,都是大于或等于0的整数,
∴0≤m≤190,
当m=20时,不是整数;
当m=40时,=10;
当m=60时,不是整数;
当m=80时,不是整数;
当m=100时,=6;
当m=120时,不是整数;
当m=140时,不是整数;
当m=160时,=2;
当m=180时,不是整数;
故符合题意的运输方案有三种:
①A货车40÷20=2辆,B货车10辆;
②A货车100÷20=5辆,B货车6辆;
③A货车160÷20=8辆,B货车2辆;
∵w随m的增大而减小,
∴费用越少,m越大,
故方案③费用最少.
方法二:设安排m辆A货车,则安排辆B货车,
w=500m+400×=﹣m+,
∵=9.5,
∴0<m<10,
∵m,都为整数,
∴m=2,5,8,
故符合题意的运输方案有三种:
①A货车2辆,B货车10辆;
②A货车5辆,B货车6辆;
③A货车8辆,B货车2辆;
∵﹣<0.
∴w随m的增大而减小,
∴费用越少,m越大,
故方案③费用最少.
二.分式方程的应用(共1小题)
2.(2023•泸州)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
(1)该商场节后每千克A粽子的进价是多少元?
(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
【答案】(1)10元;
(2)该商场节前购进300千克A粽子获得利润最大,最大利润是3000元.
【解答】解:(1)设该商场节后每千克A粽子的进价为x元,
根据题意,得,
解得x=10或x=﹣12(舍去),
经检验,x=10是原分式方程的根,且符合题意,
答:该商场节后每千克A粽子的进价是10元;
(2)设该商场节前购进m千克A粽子,总利润为w元,
根据题意,得12m+10(400﹣m)≤4600,
解得m≤300,
w=(20﹣12)m+(16﹣10)(400﹣m)=2m+2400,
∵2>0,
∴w随着m增大而增大,
当m=300时,w取得最大值,最大利润为2×300+2400=3000(元),
答:该商场节前购进300千克A粽子获得利润最大,最大利润是3000元.
三.反比例函数与一次函数的交点问题(共1小题)
3.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.
(1)求一次函数的解析式;
(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.
【答案】(1)y=﹣x+4;(2).
【解答】解:(1)∵反比例函数y=的图象过点A(2,3),点B(6,n),
∴m=2×3=6,m=6n,
∴y=,n=1,
∴一次函数y=kx+b(k≠0)的图象过点A(2,3),点B(6,1),
∴,
解得:,
∴一次函数的解析式为:y=﹣x+4;
(2)∵直线AB沿y轴向下平移8个单位后得到直线l,
∴直线l的解析式为:y=﹣x+4﹣8=﹣x﹣4,
当x=0时,y=﹣4,
当y=0时,x=﹣8,
∴M(﹣8,0),N(0,﹣4),
∴OM=8,ON=4,
∴MN===4,
联立,
得:﹣x﹣4=,
解得:x1=﹣2,x2=﹣6,
将x1=﹣2,x2=﹣6代入y=得:y1=﹣3,y2=﹣1,
经检验:和都是原方程组的解,
∴P(﹣6,﹣1),Q(﹣2,﹣3),
如图,过点P作x轴的平行线,过点Q作y轴的平行线,两条平行线交于点C,
则∠C=90°,C(﹣2,﹣1),
∴PC=﹣2﹣(﹣6)=4,CQ=﹣1﹣(﹣3)=2,
∴PQ===2,
∴==.
四.反比例函数综合题(共2小题)
4.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.
(1)求b的值;
(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.
【答案】(1)b=9;
(2)点C(4,0)或(8,0).
【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,
∴点A(2,6),
∵直线y=﹣x+b经过点A,
∴6=﹣×2+b,
∴b=9;
(2)如图,设直线AB与x轴的交点为D,
设点C(a,0),
∵直线AB与x轴的交点为D,
∴点D(6,0),
由题意可得:,
∴,,
∴点B(4,3),
∵S△ACB=S△ACD﹣S△BCD,
∴3=×CD×(6﹣3),
∴CD=2,
∴点C(4,0)或(8,0).
5.(2023•泸州)如图,在平面直角坐标系xOy中,直线l:y=kx+2与x,y轴分别相交于点A,B,与反比例函数y=(x>0)的图象相交于点C,已知OA=1,点C的横坐标为2.
(1)求k,m的值;
(2)平行于y轴的动直线与l和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.
【答案】(1)k=2,m=12;
(2)(,2+2)或(﹣1,2).
【解答】解:(1)∵OA=1,
∴点A的坐标为(﹣1,0),
则﹣k+2=0,
解得:k=2,
∴直线l的解析式为y=2x+2,
∵点C在直线l上,点C的横坐标为2,
∴点C的纵坐标为2×2+2=6,
∴点C的坐标为(2,6),
∴m=2×6=12;
(2)设点D的坐标为(n,2n+2),则点E的坐标为(n,),
∴DE=|2n+2﹣|,
∵OB∥DE,
∴当OB=DE时,以B,D,E,O为顶点的四边形为平行四边形,
∵直线y=2x+2与y轴交于点B,
∴OB=2,
∴|2n+2﹣|=2,
当2n+2﹣=2时,n1=,n2=﹣(舍去),
此时,点D的坐标为(,2+2),
当2n+2﹣=﹣2时,n1=﹣1,n2=﹣﹣1(舍去),
此时,点D的坐标为(﹣1,2),
综上所述:以B,D,E,O为顶点的四边形为平行四边形时,点D的坐标为(,2+2)或(﹣1,2).
五.二次函数综合题(共3小题)
6.(2023•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C(0,6)三点,其对称轴为x=2.
(1)求该抛物线的解析式;
(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.
①当CD=CE时,求CD的长;
②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.
【答案】(1)y=﹣x2+2x+6;
(2)①8﹣2;②点F(4,6).
【解答】解:(1)由题意得:,
解得:,
即抛物线的表达式为:y=﹣x2+2x+6;
(2)令y=﹣x2+2x+6=0,则x=6或﹣2,
即点A、B的坐标分别为:(﹣2,0)、(6,0);
①设点F(m,﹣m2+2m+6),
由点A、F得,直线AF的表达式为:y=﹣(m﹣6)(x+2)①,
当x=0时,y=﹣(m﹣6)(x+2)=6﹣m,即点D(0,6﹣m),
则CD=6﹣6+m=m,
由点B、C的坐标得,直线BC的表达式为:y=﹣x+6②,
联立①②得:﹣(m﹣6)(x+2)=﹣x+6,
解得:x=,则点E(,6﹣),
由点C、E的坐标得,CE=,
∵CD=CE,即m=,
解得:m=0(舍去)或8﹣2,
则CD=m=8﹣2;
②过点E、F分别作x轴的垂线,垂足分别为点M、N,
∵△CAD,△CDE,△CEF同高,则其面积比为边的比,
即==2,
∵OD∥EM∥FN,
则,,
则===2,
即=2,
整理得:3xE﹣xF=2,
由①知,xE=,xF=m,
则3×﹣m=2,
解得:m=±4(舍去负值),
经检验,m=4是方程的根,
则点F(4,6).
7.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
(1)求证:∠ACB=90°;
(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
①求DE+BF的最大值;
②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.
【答案】(1)证明见解答过程;
(2)①9;
②(4,6)或(3,).
【解答】解:(1)y=﹣x2+x+4中,令x=0得y=4,令y=0得x1=﹣2,x2=8,
∴A(﹣2,0),B(8,0),C(0,4),
∴OA=2,OB=8,OC=4,AB=10,
∴AC2=OA2+OC2=20,BC2=OB2+OC2=80,
∴AC2+BC2=100,
而AB2=102=100,
∴AC2+BC2=AB2,
∴∠ACB=90°;
(2)①设直线BC解析式为y=kx+b,将B(8,0),C(0,4)代入可得:,
解得,
∴直线BC解析式为y=﹣x+4,
设第一象限D(m,+m+4),则E(m,﹣m+4),
∴DE=(+m+4)﹣(﹣m+4)=﹣m2+2m,BF=8﹣m,
∴DE+BF=(﹣m2+2m)+(8﹣m)
=﹣m2+m+8
=﹣(m﹣2)2+9,
∴当m=2时,DE+BF的最大值是9;
②由(1)知∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵DF⊥x轴于F,
∴∠FEB+∠CBA=90°,
∴∠CAB=∠FEB=∠DEC,
(一)当A与E对应时,
以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
而G为AC中点,A(﹣2,0),C(0,4),
∴G(﹣1,2),OA=2,AG=,
由①知:DE=﹣m2+2m,E(m,﹣m+4),
∴CE==,
当=时,=,解得m=4或m=0(此时D与C重合,舍去)
∴D(4,6),
当=时,=,解得m=3或m=0(舍去),
∴D(3,),
∵在Rt△AOC中,G是AC中点,
∴OG=AG,
∴∠GAO=∠GOA,即∠CAB=∠GOA,
∴∠DEC=∠GOA,
(二)当O与E对应时,
以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
∵OG=AG,
∴=与=答案相同,同理=与或=答案相同,
综上所述,以点C,D,E为顶点的三角形与△AOG相似,则D的坐标为(4,6)或(3,).
8.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
【答案】(1);
(2)y=﹣x;
(3)点F的坐标为(2,0)或(,0).
【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
解得:;
(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,
设直线AB的解析式为:y=kx+b,
则,解得:,
∴AB的解析式为:y=2x+4,
设直线DE的解析式为:y=mx,
∴2x+4=mx,
∴x=,
当x=3时,y=3m,
∴E(3,3m),
∵△BDO与△OCE的面积相等,CE⊥OC,
∴•3•(﹣3m)=•4•,
∴9m2﹣18m﹣16=0,
∴(3m+2)(3m﹣8)=0,
∴m1=﹣,m2=(舍),
∴直线DE的解析式为:y=﹣x;
(3)存在,
B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
设P(t,﹣t2+t+4),
①如图1,过点P作PH⊥y轴于H,
∵四边形BPGF是矩形,
∴BP=FG,∠PBF=∠BFG=90°,
∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
∴∠PBH=∠OFB=∠CGF,
∵∠PHB=∠FCG=90°,
∴△PHB≌△FCG(AAS),
∴PH=CF,
∴CF=PH=t,OF=3﹣t,
∵∠PBH=∠OFB,
∴=,即=,
解得:t1=0(舍),t2=1,
∴F(2,0);
②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,
同①可得:NG=FM=3,OF=t﹣3,
∵∠OFB=∠FPM,
∴tan∠OFB=tan∠FPM,
∴=,即=,
解得:t1=,t2=(舍),
∴F(,0);
综上,点F的坐标为(2,0)或(,0).
六.平行四边形的性质(共1小题)
9.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.
【答案】证明过程见解答.
【解答】证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS),
∴DE=BF.
七.切线的性质(共2小题)
10.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
(1)求证:∠ACF=∠B;
(2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.
【答案】(1)证明见解答;
(2)18.
【解答】(1)证明:如图1,连接OC,
∵CF是⊙O的切线,
∴∠OCF=90°,
∴∠OCA+∠ACF=90°,
∵OE=OC,
∴∠E=∠OCE,
∵AE是⊙O的直径,
∴∠ACE=90°,
∴∠OCA+∠OCE=90°,
∴∠ACF=∠OCE=∠E,
∵∠B=∠E,
∴∠ACF=∠B;
(2)解:∵∠ACF=∠B,∠F=∠F,
∴△ACF∽△CBF,
∴=,
∵AF=2,CF=4,
∴,
∴BF=8,
∴AB=BC=8﹣2=6,AC=3,
∵AD⊥BC,
∴∠ADB=∠ACE=90°,
∵∠B=∠E,
∴△ABD∽△AEC,
∴=,即AE•AD=AB×AC=6×3=18.
11.(2023•泸州)如图,AB是⊙O的直径,AB=2,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O的切线交AB的延长线于点F,连接BC.
(1)求证:BC平分∠DCF;
(2)G为上一点,连接CG交AB于点H,若CH=3GH,求BH的长.
【答案】(1)见解析;
(2)2.
【解答】(1)证明:如图,连接OC,
∵CF是⊙O的切线,点C是切点,
∴OC⊥CF,
即∠OCF=90°,
∴∠OCB+∠BCF=90°,
∵CD⊥AB,AB是直径,
∴CE=DE=CD=3,∠BEC=90°,
∴∠BCE+∠OBC=90°,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCE=∠BCF,
即BC平分∠DCF;
(2)解:连接OC,OG,过G作GM⊥AB于M,
∵AB是⊙O的直径,CD⊥AB,
∴CE=CD=3,OC=OG=AB=,
∴OE==1,
∵GM⊥AB,CD⊥AB,
∴CE∥GM,
∴△GMH∽△CEH,
∴,
∵CH=3GH,
∴,
∴GM=1,
设MH=x,则HE=3x,
∴HO=3x﹣1.OM=4x﹣1,
在Rt△OGM中,OM2+GM2=OG2,
∴(4x﹣1)2+12=()2,
解得x=1(负值舍去),
∴BH=OH+OB=3×1﹣1+=2.
八.圆的综合题(共1小题)
12.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
【答案】(1)证明见解析部分;
(2).
【解答】(1)证明:连接OD.
∵DF是⊙O的切线,
∴OD⊥DF,
∵CD平分∠ACB,
∴=,
∴OD⊥AB,
∴AB∥DF;
(2)解:过点C作CH⊥AB于点H.
∵AB是直径,
∴∠ACB=90°,
∵BC=,AC=2,
∴AB===5,
∵S△ABC=•AC•BC=•AB•CH,
∴CH==2,
∴BH==1,
∴OH=OB﹣BH=﹣1=,
∵DF∥AB,
∴∠COH=∠F,
∵∠CHO=∠ODF=90°,
∴△CHO∽△ODF,
∴=,
∴=,
∴DF=.
九.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•泸州)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:的斜坡AB前进20m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,计算结果用根号表示,不取近似值).
【答案】(40﹣)m.
【解答】解:过点B作BF⊥AD于点F,过点C作CG⊥AD于点G,
在Rt△ABF中,
∵i=2:,
∴可设BF=2k,AF=k,
∵AB=m,
∵BF2+AF2=AB2,
∴(2k)2+(k)2=()2,
解得k=20(负的已舍),
∴BF=2k=40m,
延长BC,DE交于点H,
∵BC是水平线,DE是铅直线,
∴DH⊥CH,△CDH和△CEH都是△Rt,
∵AD,BC都是水平线,BF⊥AD,DH⊥BC,
∴四边形BFDH是矩形,
∴DH=BF=40m,
在Rt△CDH中,
∵tan∠DCH=,
∴CH==(m),
在Rt△CEH中,
∵tan∠CEH=,
∴EH=CH•tan∠CEH=•tan37°≈×=(m),
∴DE=DH﹣EH=(40﹣)
答:古树DE的高度为(40﹣)m.
一十.解直角三角形的应用-方向角问题(共2小题)
14.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
【答案】14nmile.
【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.
∴∠C=90°,
∴AB==BC=8=16(nmile),
过D作DH⊥AB于H,
则∠AHD=∠BHD=90°,
在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,
∴AH=AD=5nmile,DH=10•cos30°=10×=5mile,
∴BH=AB﹣AH=11nmile,
在Rt△BDH中,
BD===14(nmile),
答:B,D间的距离是14nmile.
15.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
(1)求观测点B与C点之间的距离;
(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
【答案】见试题解答内容
【解答】解:(1)如图,过点C作CE⊥AB于点E,
根据题意可知:∠ACE=∠CAE=45°,AC=25海里,
∴AE=CE=25(海里),
∵∠CBE=30°,
∴BE=25(海里),
∴BC=2CE=50(海里).
答:观测点B与C点之间的距离为50海里;
(2)如图,作CF⊥DB于点F,
∵CF⊥DB,FB⊥EB,CE⊥AB,
∴四边形CEBF是矩形,
∴FB=CE=25(海里),CF=BE=25(海里),
∴DF=BD+BF=30+25=55(海里),
在Rt△DCF中,根据勾股定理,得
CD===70(海里),
∴70÷42=(小时).
答:救援船到达C点需要的最少时间是小时.
相关试卷
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。
这是一份河北省2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类,共33页。试卷主要包含了称为一次乙方式,2上,且在C的对称轴右侧,求点P′移动的最短路程,,连接A′P等内容,欢迎下载使用。