|试卷下载
搜索
    上传资料 赚现金
    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    立即下载
    加入资料篮
    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类01
    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类02
    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    展开
    这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.一次函数的应用(共2小题)
    1.(2021•陕西)某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.
    (1)求货车B距甲地的距离y与时间x的关系式;
    (2)求货车B到乙地后,货车A还需多长时间到达甲地.

    2.(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.
    (1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是    m/min;
    (2)求AB的函数表达式;
    (3)求“猫”从起点出发到返回至起点所用的时间.

    二.二次函数的应用(共1小题)
    3.(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.
    (1)求满足设计要求的抛物线的函数表达式;
    (2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.

    三.四边形综合题(共1小题)
    4.(2021•陕西)问题提出
    (1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)
    问题解决
    (2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.

    四.三角形的外接圆与外心(共1小题)
    5.(2023•陕西)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.
    (1)求证:BD=BC;
    (2)若⊙O的半径r=3,BE=6,求线段BF的长.

    五.切线的判定与性质(共1小题)
    6.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.
    (1)求证:BC是⊙O的切线;
    (2)求EF的长.

    六.圆的综合题(共1小题)
    7.(2023•陕西)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P在⊙O上,点M在AB上,连接PM,求线段PM的最小值;
    (2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修道路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.

    七.作图—基本作图(共1小题)
    8.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、C的距离相等.(尺规作图,保留作图痕迹,不写作法)

    八.相似三角形的应用(共1小题)
    9.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.

    九.解直角三角形的应用-仰角俯角问题(共1小题)
    10.(2023•陕西)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)

    一十.频数(率)分布直方图(共1小题)
    11.(2023•陕西)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:
    分组
    频数
    组内小西红柿的总个数
    25≤x<35
    1
    28
    35≤x<45
    n
    154
    45≤x<55
    9
    452
    55≤x<65
    6
    366
    根据以上信息,解答下列问题:
    (1)补全频数分布直方图:这20个数据的众数是    ;
    (2)求这20个数据的平均数;
    (3)“校园农场”中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.

    一十一.众数(共1小题)
    12.(2021•陕西)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:

    根据以上信息,回答下列问题:
    (1)这60天的日平均气温的中位数为    ,众数为    ;
    (2)求这60天的日平均气温的平均数;
    (3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
    一十二.列表法与树状图法(共3小题)
    13.(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.
    (1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是    ;
    (2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.
    14.(2021•陕西)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.
    (1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为    ;
    (2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.
    15.(2021•陕西)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
    (1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为    ;
    (2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.一次函数的应用(共2小题)
    1.(2021•陕西)某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.
    (1)求货车B距甲地的距离y与时间x的关系式;
    (2)求货车B到乙地后,货车A还需多长时间到达甲地.

    【答案】(1)y=60x﹣60(1≤x≤5);
    (2)1小时.
    【解答】解:(1)设货车B距甲地的距离y与时间x的关系式为y=kx+b,
    根据题意得:

    解得,
    ∴货车B距甲地的距离y与时间x的关系式为y=60x﹣60(1≤x≤5);
    (2)当x=3时,y=60×3﹣60=120,
    故货车A的速度为:(240﹣120)÷3=40(km/h),
    货车A到达甲地所需时间为:240÷40=6(小时),
    6﹣5=1(小时),
    答:货车B到乙地后,货车A还需1小时到达甲地.
    2.(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.
    (1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是  1 m/min;
    (2)求AB的函数表达式;
    (3)求“猫”从起点出发到返回至起点所用的时间.

    【答案】(1)1;(2)AB的解析式为:y=﹣4x+58;(3)猫”从起点出发到返回至起点所用的时间为13.5min.
    【解答】解:(1)由图象知:“鼠”6min跑了30m,
    ∴“鼠”的速度为:30÷6=5(m/min),
    “猫”5min跑了30m,
    ∴“猫”的速度为:30÷5=6(m/min),
    ∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),
    故答案为:1;
    (2)设AB的解析式为:y=kx+b,
    ∵图象经过A(7,30)和B(10,18),
    把点A和点B坐标代入函数解析式得:

    解得:,
    ∴AB的解析式为:y=﹣4x+58;
    (3)令y=0,则﹣4x+58=0,
    ∴x=14.5,
    ∵“猫”比“鼠”迟一分钟出发,
    ∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).
    答:“猫”从起点出发到返回至起点所用的时间为13.5min.
    二.二次函数的应用(共1小题)
    3.(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.
    (1)求满足设计要求的抛物线的函数表达式;
    (2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.

    【答案】(1)y=﹣(x﹣5)2+9;
    (2)A(5﹣,6),B(5+,6).
    【解答】解:(1)由题意抛物线的顶点P(5,9),
    ∴可以假设抛物线的解析式为y=a(x﹣5)2+9,
    把(0,0)代入,可得a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣5)2+9;

    (2)令y=6,得﹣(x﹣5)2+9=6,
    解得x1=+5,x2=﹣+5,
    ∴A(5﹣,6),B(5+,6).
    三.四边形综合题(共1小题)
    4.(2021•陕西)问题提出
    (1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)
    问题解决
    (2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.

    【答案】(1);(2)存在,四边形OPMN面积的最小值为47000平方米,此时,点N到点A的距离为350米.
    【解答】解:(1)如图1,过点A作AH⊥CD交CD的延长线于H,过点E作EG⊥CH于G,
    ∴∠H=90°,
    ∵四边形ABCD是平行四边形,
    ∴CD=AB=8,AB∥CD,
    ∴∠ADH=∠BAD=45°,
    在Rt△ADH中,AD=6,
    ∴AH=AD•sin∠BAD=6×sin45°=3,
    ∵点E是AD的中点,
    ∴DE=AD=3,
    同理EG=,
    ∵DF=5,
    ∴FC=CD﹣DF=3,
    ∴S四边形ABFE=S▱ABCD﹣S△DEF﹣S△BFC=8×3﹣×5×﹣×3×3=;

    (2)存在,如图2,分别延长AE与CD,交于点K,则四边形ABCK是矩形,
    ∴AK=BC=1200米,AB=CK=800米,
    设AN=x米,则PC=x米,BO=2x米,BN=(800﹣x)米,AM=OC=(1200﹣2x)米,
    ∴MK=AK﹣AM=1200﹣(1200﹣2x)=2x米,PK=CK﹣CP=(800﹣x)米,
    ∴S四边形OPMN=S矩形ABCK﹣S△AMN﹣S△BON﹣S△OCP﹣S△PKM
    =800×1200﹣x(1200﹣2x)﹣•2x(800﹣x)﹣x(1200﹣2x)﹣•2x(800﹣x)
    =4(x﹣350)2+470000,
    ∴当x=350时,S四边形OPMN最小=470000(平方米),
    AM=1200﹣2x=1200﹣2×350=500<900,CP=x=350<600,
    ∴符合设计要求的四边形OPMN面积的最小值为470000平方米,此时,点N到点A的距离为350米.


    四.三角形的外接圆与外心(共1小题)
    5.(2023•陕西)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.
    (1)求证:BD=BC;
    (2)若⊙O的半径r=3,BE=6,求线段BF的长.

    【答案】(1)见解析;
    (2)2+.
    【解答】(1)证明:如图,连接DC,
    则∠BDC=∠BAC=45°,
    ∵BD⊥BC,
    ∴∠BCD=90°﹣∠BDC=45°,
    ∴∠BCD=∠BDC.
    ∴BD=BC;
    (2)解:如图,∵∠DBC=90°,
    ∴CD为⊙O的直径,
    ∴CD=2r=6.
    ∴BC=CD•sin=3,
    ∴EC===3,
    ∵BF⊥AC,
    ∴∠BMC=∠EBC=90°,∠BCM=∠BCM,
    ∴△BCM∽△ECB.
    ∴,
    ∴BM===2,CM=,
    连接CF,则∠F=∠BDC=45°,∠MCF=45°,
    ∴MF=MC=,
    ∴BF=BM+MF=2+.

    五.切线的判定与性质(共1小题)
    6.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.
    (1)求证:BC是⊙O的切线;
    (2)求EF的长.

    【答案】(1)见解析;
    (2)EF=.
    【解答】(1)证明:∵OA=2,AB=4,AC=8,
    ∴,
    ∵∠OAB=∠BAC=90°,
    ∴△OAB∽△BAC,
    ∴∠BOA=∠ABC,
    ∵∠OBA+∠BOA=90°,
    ∴∠OBA+∠ABC=90°,
    即∠OBC=90°,
    ∵OB为⊙O的半径,
    ∴BC是⊙O的切线;
    (2)解:如图,过点O作OG⊥BF于点G,

    ∵OG⊥BF,OA⊥BE,弦BF=BE,
    ∴BG=AB,
    ∵OB=OB,
    ∴Rt△BOG≌Rt△BOA(HL),
    ∴∠FBD=∠EBD,即BD平分∠FBE,
    ∵BF=BE,即△BEF为等腰三角形,
    ∴BD⊥EF,DF=DE,
    ∵OA=2,AB=4,
    ∴,
    在Rt△ABO中,sin∠OBA==,
    在Rt△BDE中,sin∠DBE=,
    ∴DE=
    ∴EF=.
    六.圆的综合题(共1小题)
    7.(2023•陕西)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P在⊙O上,点M在AB上,连接PM,求线段PM的最小值;
    (2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修道路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.

    【答案】(1)4﹣4;
    (2)4047.91m.
    【解答】解:(1)如图①,连接OP,OM,过点O作OM'⊥AB,垂足为M',

    则 OP+PM≥OM.
    ∵⊙O半径为4,
    ∴PM≥OM﹣4≥OM'﹣4,
    ∵OA=OB.∠AOB=120°,
    ∴∠A=30°,
    ∴OM'=AM'•tan30°=12tan30°=4,
    ∴PM≥OM'﹣4=4﹣4,
    ∴线段PM的最小值为4﹣4;
    (2)如图②,分别在BC,AE上作BB'=AA'=r=30(m),

    连接A'B',B'O、OP、OE、B′E.
    ∵OM⊥AB,BB'⊥AB,ON=BB',
    ∴四边形BB'ON是平行四边形.
    ∴BN=B′O.
    ∵B'O+OP+PE≥B'O+OE≥B'E,
    ∴BN+PE≥B'E﹣r,
    ∴当点O在B'E上时,BN+PE取得最小值.
    作⊙O',使圆心O'在B'E上,半径r=30(m),
    作O'M'⊥AB,垂足为M',并与A'B'交于点H.
    ∴O'H∥A'E,
    ∴△B'O'H∽△B'EA',
    ∴,
    ∵⊙O'在矩形AFDE区域内(含边界),
    ∴当⊙O'与FD相切时,B′H最短,即B′H=10000﹣6000+30=4030(m).
    此时,O′H也最短.
    ∵M'N'=O'H,
    ∴M'N'也最短.
    ∴O'H==4017.91(m),
    ∴O'M'=O'H+30=4047.91(m),
    ∴此时环道⊙O的圆心O到AB的距离OM的长为4047.91m.
    七.作图—基本作图(共1小题)
    8.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、C的距离相等.(尺规作图,保留作图痕迹,不写作法)

    【答案】作图见解析部分.
    【解答】解:如图,点P即为所求.

    八.相似三角形的应用(共1小题)
    9.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.

    【答案】3米.
    【解答】解:解法一:∵AD∥EG,
    ∴∠ADO=∠EGF,
    ∵∠AOD=∠EFG=90°,
    ∴△AOD∽△EFG,
    ∴=,即=,
    ∴AO=15,
    ∵AD∥BC,
    ∴△BOC∽△AOD,
    ∴=,即=,
    ∴BO=12,
    ∴AB=AO﹣BO=15﹣12=3(米);
    解法二:如图,过点C作CM⊥OD于C,交AD于M,

    ∵△EGF∽△MDC,
    ∴=,即=,
    ∴CM=3,
    即AB=CM=3(米),
    答:旗杆的高AB是3米.
    九.解直角三角形的应用-仰角俯角问题(共1小题)
    10.(2023•陕西)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)

    【答案】该景观灯的高AB约为4.8m.
    【解答】解:过点E作EH⊥AB,垂足为H,

    由题意得:EH=FB,EF=BH=1.6m,
    设EH=FB=xm,
    在Rt△AEH中,∠AEH=26.6°,
    ∴AH=EH•tan26.6°≈0.5x(m),
    ∴AB=AH+BH=(0.5x+1.6)m,
    ∵CD⊥FB,AB⊥FB,
    ∴∠CDF=∠ABF=90°,
    ∵∠CFD=∠AFB,
    ∴△CDF∽△ABF,
    ∴=,
    ∴=,
    ∴AB=x,
    ∴x=0.5x+1.6,
    解得:x=6.4,
    ∴AB=x=4.8(m),
    ∴该景观灯的高AB约为4.8m.
    一十.频数(率)分布直方图(共1小题)
    11.(2023•陕西)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:
    分组
    频数
    组内小西红柿的总个数
    25≤x<35
    1
    28
    35≤x<45
    n
    154
    45≤x<55
    9
    452
    55≤x<65
    6
    366
    根据以上信息,解答下列问题:
    (1)补全频数分布直方图:这20个数据的众数是  54 ;
    (2)求这20个数据的平均数;
    (3)“校园农场”中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.

    【答案】(1)补全频数分布直方图见解答;54;
    (2)50;
    (3)15000个.
    【解答】解:(1)由题意得,n=20﹣1﹣9﹣6=4,
    补全频数分布直方图如下

    这20个数据中,54出现的次数最多,故众数为54.
    故答案为:54;
    (2).
    ∴这20个数据的平均数是50;
    (3)所求总个数:50×300=15000(个).
    ∴估计这300棵西红柿植株上小西红柿的总个数是15000个.
    一十一.众数(共1小题)
    12.(2021•陕西)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:

    根据以上信息,回答下列问题:
    (1)这60天的日平均气温的中位数为  19.5℃ ,众数为  19℃ ;
    (2)求这60天的日平均气温的平均数;
    (3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
    【答案】(1)19.5℃,19℃;(2)20℃;(3)20天.
    【解答】解:(1)这60天的日平均气温的中位数为=19.5(℃),众数为19℃,
    故答案为:19.5℃,19℃;
    (2)这60天的日平均气温的平均数为×(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20(℃);
    (3)∵×30=20(天),
    ∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天.
    一十二.列表法与树状图法(共3小题)
    13.(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.
    (1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是   ;
    (2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.
    【答案】(1);
    (2).
    【解答】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是,
    故答案为:;
    (2)画树状图如下:

    共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,
    ∴所选两个纸箱里西瓜的重量之和为15kg的概率为=.
    14.(2021•陕西)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.
    (1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为   ;
    (2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.
    【答案】(1);
    (2).
    【解答】解:(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为,
    故答案为:;
    (2)画树状图如下:

    共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,
    ∴摸出的这两个小球标记的数字之和为7的概率为=.
    15.(2021•陕西)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
    (1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为   ;
    (2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.
    【答案】见试题解答内容
    【解答】解:(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为=,
    故答案为:;
    (2)画树状图如图:

    共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,
    ∴抽取的这两张牌的牌面数字恰好相同的概率为=.
    相关试卷

    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(容易题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(容易题)知识点分类,共7页。试卷主要包含了计算,﹣1,解方程,求不等式﹣1<的正整数解,解不等式组等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map