河北省2021-2023三年中考数学真题分类汇编-02解答题(基础题)知识点分类
展开
这是一份河北省2021-2023三年中考数学真题分类汇编-02解答题(基础题)知识点分类,共14页。试卷主要包含了某惯性飞镖游戏的靶盘如图,的值为P,嘉嘉和淇淇在玩沙包游戏等内容,欢迎下载使用。
河北省2021-2023三年中考数学真题分类汇编-02解答题(基础题)知识点分类
一.科学记数法—表示较大的数(共1小题)
1.(2021•河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.
(1)用含m,n的代数式表示Q;
(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.
二.完全平方公式(共1小题)
2.(2022•河北)发现 两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
验证 如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;
探究 设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.
三.一元一次方程的应用(共1小题)
3.(2023•河北)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:
投中位置
A区
B区
脱靶
一次计分(分)
3
1
﹣2
在某一局中,珍珍投中A区4次,B区2次.脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
四.一元一次不等式的整数解(共1小题)
4.(2022•河北)整式3(﹣m)的值为P.
(1)当m=2时,求P的值;
(2)若P的取值范围如图所示,求m的负整数值.
五.一元一次不等式的应用(共1小题)
5.(2021•河北)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.
六.二次函数的应用(共1小题)
6.(2023•河北)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2 的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.
(1)写出C1的最高点坐标,并求a,c的值;
(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.
七.解直角三角形的应用(共1小题)
7.(2022•河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN∥AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.
(1)求∠C的大小及AB的长;
(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据:tan76°取4,取4.1)
八.解直角三角形的应用-仰角俯角问题(共1小题)
8.(2021•河北)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.
(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;
(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;
(3)通过计算说明两机距离PQ不超过3km的时长是多少.
[注:(1)及(2)中不必写s的取值范围]
九.条形统计图(共1小题)
9.(2022•河北)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.
一十.列表法与树状图法(共1小题)
10.(2021•河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.
(1)求嘉淇走到十字道口A向北走的概率;
(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.
河北省2021-2023三年中考数学真题分类汇编-02解答题(基础题)知识点分类
参考答案与试题解析
一.科学记数法—表示较大的数(共1小题)
1.(2021•河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.
(1)用含m,n的代数式表示Q;
(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.
【答案】(1)Q=4m+10n;
(2)Q=4×5×104+10×3×103=2.3×105.
【解答】解:(1)由题意可得:Q=4m+10n;
(2)将m=5×104,n=3×103代入(1)式得:
Q=4×5×104+10×3×103=2.3×105.
二.完全平方公式(共1小题)
2.(2022•河北)发现 两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
验证 如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;
探究 设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.
【答案】两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由见解答.
【解答】解:验证:10的一半为5,
5=1+4=12+22,
探究:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由如下:
(m+n)2+(m﹣n)2
=m2+2mn+n2+m2﹣2mn+n2
=2m2+2n2
=2(m2+n2),
故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
三.一元一次方程的应用(共1小题)
3.(2023•河北)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:
投中位置
A区
B区
脱靶
一次计分(分)
3
1
﹣2
在某一局中,珍珍投中A区4次,B区2次.脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
【答案】(1)6分;
(2)k=6.
【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),
答:珍珍第一局的得分为6分;
(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,
解得:k=6.
四.一元一次不等式的整数解(共1小题)
4.(2022•河北)整式3(﹣m)的值为P.
(1)当m=2时,求P的值;
(2)若P的取值范围如图所示,求m的负整数值.
【答案】(1)﹣5;
(2)﹣1,﹣2.
【解答】解:(1)根据题意得,P=3(﹣2)=3×(﹣)=﹣5;
(2)由数轴知,P≤7,
即3(﹣m)≤7,
解得m≥﹣2,
∵m为负整数,
∴m=﹣1.﹣2.
五.一元一次不等式的应用(共1小题)
5.(2021•河北)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.
【答案】见试题解答内容
【解答】解:(1)嘉嘉所列方程为101﹣x=2x,
解得:x=33,
又∵x为整数,
∴x=33不合题意,
∴淇淇的说法不正确.
(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,
依题意得:101﹣x﹣x≥28,
解得:x≤36,
又∵x为整数,
∴x可取的最大值为36.
答:A品牌球最多有36个.
六.二次函数的应用(共1小题)
6.(2023•河北)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2 的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.
(1)写出C1的最高点坐标,并求a,c的值;
(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.
【答案】(1)C1的最高点坐标为(3,2),a=﹣,c=1;
(2)符合条件的n的整数值为4和5.
【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,
∴C1的最高点坐标为(3,2),
∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,
∴1=a(6﹣3)2+2,
∴a=﹣,
∴抛物线C1:y=﹣(x﹣3)2+2,
当x=0时,c=1;
(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,
∴此时,点A的坐标范围是(5,1)~(7,1),
当经过(5,1)时,1=﹣×25+×5+1+1,
解得:n=,
当经过(7,1)时,1=﹣×49+×7+1+1,
解得:n=,
∴≤n≤,
∵n为整数,
∴符合条件的n的整数值为4和5.
七.解直角三角形的应用(共1小题)
7.(2022•河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN∥AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.
(1)求∠C的大小及AB的长;
(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据:tan76°取4,取4.1)
【答案】(1)∠C=76°,AB的长为6.8m;
(2)画出线段DH见解答过程,最大水深约为2.6米.
【解答】解:(1)∵嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,
∴∠CAB=14°,∠CBA=90°,
∴∠C=180°﹣∠CAB﹣∠CBA=76°,
∵tanC=,BC=1.7m,
∴tan76°=,
∴AB=1.7×tan76°=6.8(m),
答:∠C=76°,AB的长为6.8m;
(2)图中画出线段DH如图:
∵OA=OM,∠BAM=7°,
∴∠OMA=∠OAM=7°,
∵AB∥MN,
∴∠AMD=∠BAM=7°,
∴∠OMD=14°,
∴∠MOD=76°,
在Rt△MOD中,
tan∠MOD=,
∴tan76°=,
∴MD=4OD,
设OD=xm,则MD=4xm,
在Rt△MOD中,OM=OA=AB=3.4m,
∴x2+(4x)2=3.42,
∵x>0,
∴x=≈0.82,
∴OD=0.82m,
∴DH=OH﹣OD=OA﹣OD=3.4﹣0.82=2.58≈2.6(m),
答:最大水深约为2.6米.
八.解直角三角形的应用-仰角俯角问题(共1小题)
8.(2021•河北)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.
(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;
(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;
(3)通过计算说明两机距离PQ不超过3km的时长是多少.
[注:(1)及(2)中不必写s的取值范围]
【答案】(1)h=s;3km/min;(2)(19,0);(3)min.
【解答】解:(1)∵2号飞机爬升角度为45°,
∴OA上的点的横纵坐标相同.
∴A(4,4).
设OA的解析式为:h=ks,
∴4k=4.
∴k=1.
∴OA的解析式为:h=s.
∵2号试飞机一直保持在1号机的正下方,
∴它们的飞行的时间和飞行的水平距离相同.
∵2号机在爬升到A处时水平方向上移动了4km,飞行的距离为4km,
又1号机的飞行速度为3km/min,
∴2号机的爬升速度为:4÷=3km/min.
(2)设BC的解析式为h=ms+n,
由题意:B(7,4),
∴,
解得:.
∴BC的解析式为h=.
令h=0,则s=19.
∴预计2号机着陆点的坐标为(19,0).
(3)解法一:∵PQ不超过3km,
∴5﹣h≤3.
∴PQ=,
解得:2≤s≤13.
∴两机距离PQ不超过3km的时长为:(13﹣2)÷3=(min).
解法二:当PQ=3km时,h=5﹣3=2(km),
∵h=s,
∴s=2.
由2=得:s=13,
∴两机距离PQ不超过3km的时长为:(min).
九.条形统计图(共1小题)
9.(2022•河北)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.
【答案】(1)会录用甲;(2)会改变(1)的录用结果.
【解答】解:由题意得,甲三项成绩之和为:9+5+9=23(分),
乙三项成绩之和为:8+9+5=22(分),
∵23>22,
∴会录用甲;
(2)由题意得,甲三项成绩之加权平均数为:9×+5×+9×
=3+2.5+1.5
=7(分),
乙三项成绩之加权平均数为:8×+9×+5×
=+4.5+
=8(分),
∵7<8,
∴会改变(1)的录用结果.
一十.列表法与树状图法(共1小题)
10.(2021•河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.
(1)求嘉淇走到十字道口A向北走的概率;
(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.
【答案】(1);
(2)图形见解析;向西参观的概率大.
【解答】解:(1)嘉淇走到十字道口A向北走的概率为;
(2)补全树状图如下:
共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,
∴向西参观的概率为=,向南参观的概率=向北参观的概率=向东参观的概率=,
∴向西参观的概率大.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共22页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。
这是一份河北省2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类,共33页。试卷主要包含了称为一次乙方式,2上,且在C的对称轴右侧,求点P′移动的最短路程,,连接A′P等内容,欢迎下载使用。