![7年级数学上册同步培优题典 专题3.2 方程的解与等式的性质(人教版)01](http://img-preview.51jiaoxi.com/2/3/14191977/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![7年级数学上册同步培优题典 专题3.2 方程的解与等式的性质(人教版)02](http://img-preview.51jiaoxi.com/2/3/14191977/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![7年级数学上册同步培优题典 专题3.2 方程的解与等式的性质(人教版)03](http://img-preview.51jiaoxi.com/2/3/14191977/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![7年级数学上册同步培优题典 专题3.2 方程的解与等式的性质(人教版)01](http://img-preview.51jiaoxi.com/2/3/14191977/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版七年级上册3.1.2 等式的性质精品当堂达标检测题
展开初中数学培优措施和方法
1、拓宽解题思路。数学解题不要局限于本题,而要做到举一反三、多思多想
2、细节决定成败。审题的细节、知识理解的细节、运用公式的细节、忽视检验的细节等,细节决定成败。
3、制作错题集。收集自己的错误,分门别类,没事时就翻一翻,看一看,自警一番,肯定会有很大的收获。
4、查自己欠缺的知识。关键的是做好知识准备,检查漏洞;其次是对解题常犯错误的准备
5、把好的做法形成习惯。注意书写规范,重要步骤不能丢,丢步骤等于丢分。
6、主动思考,全心投入。听课过程中,要主动思考,这样遇到实际问题时,会应用所学的知识去解答问题。
专题3.2方程的解和等式的性质
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
一.选择题(共10小题)
1.(2019秋•三台县期末)下列变形中,正确的是( )
A.若x2=5x,则x=5
B.若a2x=a2y,则x=y
C.若,则y=﹣12
D.若,则x=y
【分析】直接利用等式的性质分别判断得出答案.
【解答】解:A、∵x2=5x,解得:x1=0,x2=5,故此选项错误;
B、若a2x=a2y,则x=y(应加条件a≠0),故此选项错误;
C、若,则y,故此选项错误;
D、若,则x=y,正确.
故选:D.
2.(2019秋•雨花区校级期末)下列等式变形错误的是( )
A.若a=b,则
B.若a=b,则3a=3b
C.若a=b,则ax=bx
D.若a=b,则
【分析】根据等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;
性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.即可判断.
【解答】解:根据等式的性质可知:
A.若a=b,则.正确;
B.若a=b,则3a=3b,正确;
C.若a=b,则ax=bx,正确;
D.若a=b,则(m≠0),所以原式错误.
故选:D.
3.(2020•顺德区模拟)下列说法正确的是( )
A.如果ab=ac,那么b=c
B.如果2x=2a﹣b,那么x=a﹣b
C.如果a=b,那么a+2=b+3
D.如果,那么b=c
【分析】根据等式的性质,逐项判断即可.
【解答】解:∵如果ab=ac,那么b=c或b≠c(a=0),
∴选项A不符合题意;
∵如果2x=2a﹣b,那么x=a﹣0.5b,
∴选项B不符合题意;
∵如果a=b,那么a+2=b+2,
∴选项C不符合题意;
∵如果,那么b=c,
∴选项D符合题意.
故选:D.
4.(2019秋•江都区期末)已知(a≠0,b≠0),下列变形错误的是( )
A. B.3a=4b C. D.4a=3b
【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.
【解答】解:由得,4a=3b,
A、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;
B、由等式性质不可以得到3a=4b,原变形错误,故这个选项符合题意;
C、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;
D、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;
故选:B.
5.(2019秋•和平区期末)下列变形符合等式基本性质的是( )
A.如果2x﹣y=7,那么y=7﹣2x
B.如果ak=bk,那么a等于b
C.如果﹣2x=5,那么x=5+2
D.如果a=1,那么a=﹣3
【分析】根据等式的性质,可得答案.
【解答】解:A、如果2x﹣y=7,那么y=2x﹣7,故A错误;
B、k=0时,两边都除以k无意义,故B错误;
C、如果﹣2x=5,那么x,故C错误;
D、两边都乘以﹣3,故D正确;
故选:D.
6.(2018春•泉港区期末)下列方程的根是x=1的是( )
A. B. C.﹣5x=5 D.2(x+1)=0
【分析】可解每个方程,然后判断,也可把根代入每个方程,得结果.
【解答】解:(法一)把x=1代入各个方程,只有选项A的左边等于右边.
故选:A
法(二)因为,
去分母,得x﹣1=0
解得x=1
所以x=1是A中方程的根;
因为1,解得x=﹣1
所以x=1不是选项B中方程的根;
因为﹣5x=﹣5,解得x=﹣1
所以x=1不是选项C中方程的根;
因为2(x+1)=0,解得x=﹣1
所以x=1不是选项D中方程的根.
故选:A.
7.(2019秋•新都区期末)若x=1是方程2x+a=0的解,则a=( )
A.1 B.2 C.﹣1 D.﹣2
【分析】将x=1代入2x+a=0即可求出a的值.
【解答】解:将x=1代入2x+a=0,
∴2+a=0,
∴a=﹣2,
故选:D.
8.(2019秋•百色期末)关于x的一元一次方程2xm﹣2+n=4的解为x=1,则m+n的值为( )
A.9 B.8 C.6 D.5
【分析】把x=1代入方程计算即可求出m与n的值,代入计算即可求出值.
【解答】解:由题意得:m﹣2=1,即m=3,
把x=1代入方程得:2+n=4,即n=2,
则m+n=5,
故选:D.
9.(2020•安徽一模)若x=2是关于x的一元一次方程ax﹣2=b的解,则3b﹣6a+2的值是( )
A.﹣8 B.﹣4 C.8 D.4
【分析】由x=2代入一元一次方程ax﹣2=b,可求得a与b的关系为(2a﹣b)=2;注意到3b﹣6a+2=3(b﹣2a)+2,将(2a﹣b)整体代入即可计算
【解答】解:
将x=2代入一元一次方程ax﹣2=b得2a﹣b=2
∵3b﹣6a+2=3(b﹣2a)+2
∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4
即3b﹣6a+2=﹣4
故选:B.
10.(2019秋•盐都区期末)若关于x的一元一次方程mx=6的解为x=﹣2,则m的值为( )
A.﹣3 B.3 C. D.
【分析】将x=﹣2代入原方程即可求出答案
【解答】解:将x=﹣2代入方程可得:﹣2m=6,
∴m=﹣3,
故选:A.
二.填空题(共10小题)
11.(2020•顺德区模拟)已知x=3是关于x方程mx﹣8=10的解,则m= 6 .
【分析】将x=3代入原方程即可求出答案.
【解答】解:将x=3代入mx﹣8=10,
∴3m=18,
∴m=6,
故答案为:6
12.若3,则2x+y= 12 ;4x+2y= 24 ; 8x +4y= 48 ;10x+ 5y = 60 .
【分析】直接利用等式的性质将原式变形得出答案.
【解答】解:∵3,
∴2x+y=12;4x+2y=24;8x+4y=48;10x+5y=60.
故答案为:12,24,8x,48,5y,60.
13.(2018秋•通州区期末)小邱认为,若ac=bc,则a=b.你认为小邱的观点正确吗? 否 (填“是”或“否”),并写出你的理由: 当c=0时,a可以不等于b .
【分析】等式两边乘同一个数或除以一个不为零的数,结果仍得等式.依据等式的基本性质进行判断.
【解答】解:若ac=bc,则a=b不一定成立,即小邱的观点不正确.
理由:当c=0时,a可以不等于b,
故答案为:否;当c=0时,a可以不等于b.
14.(2017秋•武冈市期末)不论x取何值等式2ax+b=4x﹣3恒成立,则a+b= ﹣1 .
【分析】根据等式恒成立的条件可知,当x取特殊值0或1时都成立,可将条件代入,即可求出a与b的值.
【解答】解:∵不论x取何值等式2ax+b=4x﹣3恒成立,
∴x=0时,b=﹣3,x=1时,a=2,
即a=2,b=﹣3,
∴a+b=2+(﹣3)=﹣1.
故答案为﹣1.
15.(2019秋•开福区校级期末)方程3+=2x,处被墨水盖住了,已知该方程的解是x=0,那么处的数字是 ﹣3 .
【分析】把x=0代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.
【解答】解:把x=0代入方程,得3+▲=0,
解得:▲=﹣3.
故答案为:﹣3.
16.(2019秋•青川县期末)已知x=5是方程ax﹣8=20+a的解,则a= 7 .
【分析】使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
【解答】解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解得:a=7.
故答案为:7.
17.(2019秋•海州区校级期末)当a= 6 时,方程2x+a=x+10的解为x=4.
【分析】直接把x的值代入求出a的值即可.
【解答】解:∵2x+a=x+10的解为x=4,
∴8+a=4+10,
则a=6.
故答案为:6.
18.(2019秋•徐州期末)如图,处于平衡状态的天平中,若每个A的质量为20g,则每个B的质量为 10 g.
【分析】通过理解题意,可得等量关系,即2A+B=A+3B.根据这个等量关系,可列出方程,再求解.
【解答】解:设B的质量为x克,根据题意,得
2×20+x=20+3x,
即2x=20,
x=10.
答:B的质量为10g.
故答案为:10.
19.(2019秋•沙河市期末)图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各20克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.则被移动石头的重量是 10 克.
【分析】设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z千克,根据题意及图象可以得出方程,求出方程的解即可.
【解答】解:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z克,由题意,得:
,
解得:z=10.
答:被移动石头的重量为10克.
故答案为:10.
20.(2018秋•灌云县期末)在横线上填上适当的数或整式,使所得结果仍是等式,如果3x=﹣x+4,那么3x+ x =4.
【分析】根据等式的性质,等号两边同时加上x,等式依然成立,即可得到答案.
【解答】解:根据题意得:
第一个等式等号右边为:﹣x+4,第二个等式等号右边为4,
∵(﹣x+4)+x=4,
∴等号两边同时加x,
故答案为:x.
人教版七年级下册9.1.2 不等式的性质达标测试: 这是一份人教版七年级下册9.1.2 不等式的性质达标测试,文件包含7年级数学下册尖子生同步培优题典专题92不等式的性质教师版docx、7年级数学下册尖子生同步培优题典专题92不等式的性质学生版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
专题3.2中位数-2021-2022学年九年级数学上册同步培优题典【苏科版】: 这是一份专题3.2中位数-2021-2022学年九年级数学上册同步培优题典【苏科版】,文件包含专题32中位数-2021-2022学年九年级数学上册尖子生同步培优题典解析版苏科版docx、专题32中位数-2021-2022学年九年级数学上册尖子生同步培优题典原卷版苏科版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
专题9.2不等式的性质-2021-2022学年七年级数学下册同步培优题典【人教版】: 这是一份专题9.2不等式的性质-2021-2022学年七年级数学下册同步培优题典【人教版】,文件包含专题92不等式的性质-2021-2022学年七年级数学下册尖子生同步培优题典解析版人教版docx、专题92不等式的性质-2021-2022学年七年级数学下册尖子生同步培优题典原卷版人教版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。