黄金卷17-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用)
展开【赢在中考•黄金20卷】备战 中考嘉兴、舟山全真模拟卷(嘉兴、舟山专用)
第十七模拟
一、选择题(本大题共10小题,每小题30分,共30分 在每小题所给出的四个选项中,只有一项是符合题目要求的)
1.若|a|=a,则a表示( )
A.正数 B.负数 C.非正数 D.非负数
【答案】D
【解答】解:∵|a|=a,
∴a为非负数,
故选:D.
【知识点】绝对值、正数和负数、有理数
2.在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】B
【解答】解:点(﹣3,2)所在的象限在第二象限.
故选:B.
【知识点】点的坐标
3.计算(x3)2的结果是( )
A.x5 B.2x3 C.x9 D.x6
【答案】D
【解答】解:(x3)2=x6,
故选:D.
【知识点】幂的乘方与积的乘方
4.如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为( )
A.45° B.60° C.90° D.135°
【答案】A
【解答】解:如图,
∵△ABC是等腰直角三角形,
∴∠1=45°,
∵l∥l',
∴∠α=∠1=45°,
故选:A.
【知识点】等腰直角三角形、平行线的判定、作图—复杂作图
5.一个几何体的三视图如图所示,则这个几何体是( )
A.圆柱 B.圆锥 C.三棱柱 D.长方体
【答案】C
【解答】解:由三视图知这个几何体是三棱柱,
故选:C.
【知识点】由三视图判断几何体
6.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )
A.8 B.7 C.4 D.3
【答案】A
【解答】解:∵四边形ABCD是菱形,
∴OA=OC=3,OB=OD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OB===4,
∴BD=2OB=8,
故选:A.
【知识点】菱形的性质
7.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )
A. B. C. D.
【答案】D
【解答】解:列表得:
| 1 | 2 | 3 |
1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 |
所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,
所以两次摸出的小球标号的和是偶数的概率为,
故选:D.
【知识点】列表法与树状图法
8.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )
A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32
C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32
【答案】B
【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,
根据题意得:(10﹣2x)(6﹣2x)=32.
故选:B.
【知识点】由实际问题抽象出一元二次方程
9.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为( )
A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6
【答案】D
【解答】解:由图象可知,当k1x+b<时,x的取值范围为0<x<2或x>6.
故选:D.
【知识点】反比例函数与一次函数的交点问题
10.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )
A.90°﹣α B.α C.180°﹣α D.2α
【答案】C
【解答】解:由题意可得,
∠CBD=α,∠ACB=∠EDB,
∵∠EDB+∠ADB=180°,
∴∠ADB+∠ACB=180°,
∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,
∴∠CAD=180°﹣α,
故选:C.
【知识点】旋转的性质
二、填空题(本大题共6小题,每小题4分,共24分 不需写出解答过程,请把答案直接填写在横线上)
11.因式分解:x2﹣x= ﹣ .
【答案】x(x-1)
【解答】解:x2﹣x=x(x﹣1).
故答案为:x(x﹣1).
【知识点】因式分解-提公因式法
12.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是 .
【答案】189
【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,
所以该组数据的中位数是189,
故答案为:189.
【知识点】中位数
13.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为 cm.
【答案】9
【解答】解:∵L=,
∴R==9.
故答案为:9.
【知识点】弧长的计算
14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为 .
【解答】解:由题意可得,
,
故答案为:.
【知识点】由实际问题抽象出二元一次方程组
15.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为 m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
【答案】9.5
【解答】解:过D作DE⊥AB,
∵在D处测得旗杆顶端A的仰角为53°,
∴∠ADE=53°,
∵BC=DE=6m,
∴AE=DE•tan53°≈6×1.33≈7.98m,
∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,
故答案为:9.5
【知识点】解直角三角形的应用-仰角俯角问题
16.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为 ﹣ .
【解答】解:如图作A′H⊥BC于H.
∵∠ABC=90°,∠ABE=∠EBA′=30°,
∴∠A′BH=30°,
∴A′H=BA′=1,BH=A′H=,
∴CH=3﹣,
∵△CDF∽△A′HC,
∴=,
∴=,
∴DF=6﹣2,
故答案为6﹣2.
【知识点】矩形的性质、翻折变换(折叠问题)
三、解答题(本大题共8小题,共66分 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.计算:(+2)2﹣+2﹣2
【解答】解:原式=3+4+4﹣4+
=.
【知识点】二次根式的混合运算、负整数指数幂
18.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.
求证:BE=DF.
【解答】证明:∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵AF=CE,
∴OE=OF,
在△BEO和△DFO中,
,
∴△BEO≌△DFO,
∴BE=DF.
【知识点】平行四边形的性质、全等三角形的判定与性质
19.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
类别 | A | B | C | D | E | F |
类型 | 足球 | 羽毛球 | 乒乓球 | 篮球 | 排球 | 其他 |
人数 |
| 10 | 4 |
| 6 | 2 |
根据以上信息,解答下列问题:
(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;
(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.
【答案】【第1空】4
【第2空】32
【第3空】50
【第4空】16
【第5空】24
【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,
故答案为:4;32;
(2)被调查学生的总数为10÷20%=50人,
最喜欢篮球的有50×32%=16人,
最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;
故答案为:50;16;24;
(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.
【知识点】用样本估计总体、扇形统计图、统计表
20.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.
【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,
根据题意得:=,
解得:x=60,
经检验,x=60是原分式方程的解.
答:甲平均每分钟打60个字.
【知识点】分式方程的应用
21.【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.
【发现】根据你的阅读回答问题:
(1)上述内容中,两数相乘,积的最大值为 ;
(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是 .
【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.
猜想mn的最大值为 ,并用你学过的知识加以证明.
【答案】【第1空】625
【第2空】a+b=50
【第3空】900
【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.
故答案为625;
(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.
故答案为a+b=50;
【类比】由题意,可得m+n=60,
将n=60﹣m代入mn,
得mn=﹣m2+60m=﹣(m﹣30)2+900,
∴m=30时,mn的最大值为900.
故答案为900.
【知识点】因式分解的应用
22.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求AC的长.
【解答】解:(1)如图,
连接BD,∵∠BAD=90°,
∴点O必在BD上,即:BD是直径,
∴∠BCD=90°,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴∠BDE=90°,即:BD⊥DE,
∵点D在⊙O上,
∴DE是⊙O的切线;
(2)∵DE∥AC,
∵∠BDE=90°,
∴∠BFC=90°,
∴CB=AB=8,AF=CF=AC,
∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,
∴∠CDE=∠CBD,
∵∠DCE=∠BCD=90°,
∴△BCD∽△DCE,
∴,
∴,
∴CD=4,
在Rt△BCD中,BD==4
同理:△CFD∽△BCD,
∴,
∴,
∴CF=,
∴AC=2AF=.
【知识点】相似三角形的判定与性质、圆周角定理、切线的判定与性质、垂径定理
23.如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).
(1)填空:△ABC的面积为 ;
(2)求直线AB的解析式;
(3)求S关于m的解析式,并写出m的取值范围.
【解答】解:(1)
结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S△A'B'D=,
点C移动到x轴上时,即:m=b时,S=S△A'B'C'=S△ABC=,
故答案为,
(2)如图2,过点C作CE⊥x轴于E,
∴∠AEC=∠BOA=90°,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
∵∠OAB+∠OBA=90°,
∴∠OBA=∠CAE,
由旋转知,AB=AC,
∴△AOB≌△CEA,
∴AE=OB,CE=OA,
由图2知,点C的纵坐标是点B纵坐标的2倍,
∴OA=2OB,
∴AB2=5OB2,
由(1)知,S△ABC==AB2=×5OB2,
∴OB=1,
∴OA=2,
∴A(2,0),B(0,1),
∴直线AB的解析式为y=﹣x+1;
(3)由(2)知,AB2=5,
∴AB=,
①当0<m≤时,如图3,
∵∠AOB=∠AA'F,∠OAB=∠A'AF,
∴△AOB∽△AA'F,
∴,
由运动知,AA'=m,
∴,
∴A'F=m,
∴S=AA'×A'F=m2,
②当<m≤2时,如图4
同①的方法得,A'F=m,
∴C'F=﹣m,
过点C作CE⊥x轴于E,过点B作BM⊥CE于E,
∴BM=3,CM=1,
易知,△ACE∽△FC'H,
∴,
∴
∴C'H=,
在Rt△FHC'中,FH=C'H=
由平移知,∠C'GF=∠CBM,
∵∠BMC=∠GHC',
∴△BMC∽△GHC',
∴,
∴
∴GH=,
∴GF=GH﹣FH=
∴S=S△A'B'C'﹣S△C'FG=﹣××=﹣(2﹣m)2,
即:S=.
【知识点】一次函数综合题
24.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 ﹣ (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
【答案】(m,2m-5)
【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,
∴抛物线的顶点坐标为(m,2m﹣5).
故答案为:(m,2m﹣5).
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.
∵AB∥x轴,且AB=4,
∴点B的坐标为(m+2,4a+2m﹣5).
∵∠ABC=135°,
∴设BD=t,则CD=t,
∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).
∵点C在抛物线y=a(x﹣m)2+2m﹣5上,
∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,
整理,得:at2+(4a+1)t=0,
解得:t1=0(舍去),t2=﹣,
∴S△ABC=AB•CD=﹣.
(3)∵△ABC的面积为2,
∴﹣=2,
解得:a=﹣,
∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.
分三种情况考虑:
①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,
整理,得:m2﹣14m+39=0,
解得:m1=7﹣(舍去),m2=7+(舍去);
②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,
解得:m=;
③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,
整理,得:m2﹣20m+60=0,
解得:m3=10﹣2(舍去),m4=10+2.
综上所述:m的值为或10+2.
黄金卷08-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用): 这是一份黄金卷08-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用),文件包含黄金卷08-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用解析版docx、黄金卷08-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
黄金卷09-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用): 这是一份黄金卷09-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用),文件包含黄金卷09-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用解析版docx、黄金卷09-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
黄金卷10-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用): 这是一份黄金卷10-【赢在中考•黄金20卷】备战 中考数学全真模拟卷(浙江嘉兴、舟山专用),文件包含黄金卷10-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用解析版docx、黄金卷10-赢在中考•黄金20卷备战中考数学全真模拟卷浙江嘉兴舟山专用原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。