人教A版 (2019)必修 第二册6.1 平面向量的概念一课一练
展开平面向量的概念
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.给出下列物理量:①密度;②温度;③速度;④质量;⑤功;⑥位移.正确的是( )
A.①②③是数量,④⑤⑥是向量 B.②④⑥是数量,①③⑤是向量
C.①④是数量,②③⑤⑥是向量 D.①②④⑤是数量,③⑥是向量
2.下列说法错误的是( )
A.向量与向量长度相等 B.单位向量都相等
C.的长度为,且方向是任意的 D.任一非零向量都可以平行移动
3.下列命题中正确的是( )
A.两个有共同起点且相等的向量,其终点必相同
B.两个有公共终点的向量,一定是共线向量
C.两个有共同起点且共线的向量,其终点必相同
D.若与是共线向量,则点A,B,C,D必在同一条直线上
4.有下列结论:
①表示两个相等向量的有向线段,若它们的起点相同,则终点也相同;
②若,则,不是共线向量;
③若,则四边形是平行四边形;
④若,,则;
⑤有向线段就是向量,向量就是有向线段.
其中,错误的个数是( )
A.2 B.3 C.4 D.5
5.如图所示,梯形ABCD为等腰梯形,则两腰上的向量与的关系是( )
A.= B. C.> D.<
6.如图,在正六边形ABCDEF中,点O为其中心,
则下列判断错误的是
A. B.∥
C. D.
二、多选题
7.下面的命题正确的有( )
A.方向相反的两个非零向量一定共线
B.单位向量都相等
C.若,满足且与同向,则
D.“若A、B、C、D是不共线的四点,且”“四边形ABCD是平行四边形”
三、解答题
8.在如图所示的坐标纸中(每个小正方形的边长均为1),用直尺和圆规画出下列向量.
(1),点A在点O北偏西45°方向;
(2),点B在点O正南方向.
9.已知飞机从地按北偏东方向飞行到达地,再从地按南偏东方向飞行到达地,再从地按西南方向飞行到达地.画图表示向量,并指出向量的模和方向.
10.某人从A点出发向东走了5米到达B点,然后改变方向沿东北方向走了 米到达C点,到达C点后又改变方向向西走了10米到达D点.
(1)作出向量,,;
(2)求 的模.
11.如图,和是在各边的三等分点处相交的两个全等的正三角形,设的边长为a,写出图中给出的长度为的所有向量中,
(1)与向量相等的向量;
(2)与向量共线的向量;
(3)与向量平行的向量.
12.如图所示,4×3的矩形(每个小方格都是单位正方形),在起点和终点都在小方格的顶点处的向量中,试问:
(1)与相等的向量共有几个;
(2)与方向相同且模为的向量共有几个;
四、填空题
13.中国象棋中规定:马走“日”字,象走“田”字.如图,在中国象棋的半个棋盘(4×8的矩形中每个小方格都是单位正方形)中,若马在A处,可跳到处,也可跳到处,用向量,表示马走了“一步”.若马在B或C处,则以B,C为起点表示马走了“一步”的向量共有__________个.
14.如图,在长方体中,,,,以长方体的八个顶点中两点为起点和终点的向量中.
(1)单位向量共有______个;
(2)模为的向量有______;
(3)与相等的向量有______;
参考答案:
1.D
【分析】根据向量的定义即可判断.
【详解】密度、温度、质量、功只有大小,没有方向,是数量;
速度、位移既有大小又有方向,是向量.
故选:D.
2.B
【分析】根据向量的相关概念直接判断即可.
【详解】因为,所以和互为相反向量,长度相等,方向相反,故A选项正确;
单位向量长度都为,但方向不确定,故B选项错误;
根据零向量的概念,易知C选项正确;
向量只与长度和方向有关,与位置无关,故任一非零向量都可以平行移动,故D选项正确;
故选:B.
3.A
【分析】根据向量相等与共线的概念即可解决.
【详解】两个相等的向量方向相同且长度相等,因此起点相同时终点必相同,故A正确;
两个有公共终点的向量,可能方向不同,也可能模长不同,故B错误;
两个有共同起点且共线的向量可能方向不同,也可能模长不同,终点未必相同,故C错误;
与是共线向量,也可能是AB平行于CD,故D错误.
故选:A
4.B
【分析】由向量的定义、有关性质逐项判定可得答案.
【详解】对于①,表示两个相等向量的有向线段,若它们的起点相同,则终点也相同,①正确;
对于②,若也有可能,长度不等,但方向相同或相反,即共线,②错误;
对于③,若,则,不一定相等,所以四边形不一定是平行四边形,③错误;
对于④,若,,则,④正确;
对于⑤,有向线段不是向量,向量可以用有向线段表示,⑤错误.
综上,错误的是②③⑤,共3个.
故选:B.
5.B
【分析】根据向量的大小和方向来判断,另外再根据向量除了相等,是不能比较大小的来判断.
【详解】与是等腰梯形的两腰,则它们必不平行,但长度相同,故,
又向量不是实数,是不能比较大小的.
故选:B.
6.D
【详解】根据正六边形的性质及向量相等的概念易知,∥且,∴选项A、B、C正确,故选D
7.AD
【分析】根据向量的定义和性质,逐项判断正误即可.
【详解】对于A,由相反向量的概念可知A正确;
对于B,任意两个单位向量的模相等,其方向未必相同,故B错误;
对于C,向量之间不能比较大小,只能比较向量的模,故C错误;
对于D,若A、B、C、D是不共线的四点,且,
可得,且,故四边形ABCD是平行四边形;
若四边形ABCD是平行四边形,可知,且,
此时A、B、C、D是不共线的四点,且,故D正确.
故选:AD.
8.(1)答案见解析;(2)答案见解析.
【分析】(1)根据描述找出终点A即可;
(2)根据描述找出终点B即可.
【详解】(1)∵,点A在点O北偏西45°方向,∴以O为圆心,3为半径作圆与图中正方形对角线OP的交点即为A点:
(2)∵,点B在点O正南方向,∴以O为圆心,图中OQ为半径化圆,圆弧与OR的交点即为B点:
9.答案见解析.
【分析】根据方向角及飞行距离可作出向量,然后在三角形中求向量的模和方向.
【详解】以为原点,正东方向为轴正方向,正北方向为轴正方向建立直角坐标系.
由题意知点在第一象限,点在x轴正半轴上,点在第四象限,
向量如图所示,
由已知可得,
为正三角形,所以.
又,,
所以为等腰直角三角形,
所以,.
故向量的模为,方向为东南方向.
10.(1)见解析;(2)米
【解析】(1)利用方位根据向量的定义作出向量.
(2)根据(1)作出的平面图形,利用平面几何知识求解.
【详解】(1)作出向量,,;如图所示:
(2)由题意得,△BCD是直角三角形,其中∠BDC=90°,BC=10 米,CD=10米,
所以BD=10米.△ABD是直角三角形,其中∠ABD=90°,AB=5米,BD=10米,
所以AD==(米),
所以|米.
【点睛】本题主要考查平面向量的画法和向量模的求法,还考查了方位问题和平面几何知识,属于基础题.
11.(1),;(2),,,,;(3),,,,.
【分析】(1)利用相等向量定义可得解;
(2)利用共线向量定义可得解;
(3)利用平行向量定义可得解.
【详解】(1)与向量相等的向量,即与向量大小相等,方向相同的向量,有,;
(2)与向量共线的向量,即与向量方向相同或相反的向量,有,,,,;
(3)与向量平行的向量,即与向量方向相同或相反的向量,有,,,,.
12.(1)5;(2)2.
【分析】根据共线向量和相等向量的定义、以及模的计算和对正方形的对角线即可.
【详解】解:由题可知,每个小方格都是单位正方形,
每个小正方形的对角线的长度为且都与平行,
则,
(1)由于相等向量是指方向和大小都相等的两个向量,
则与相等的向量共有5个,如图1;
(2)与方向相同且模为的向量共有2个,如图2.
【点睛】本题考查共线向量和相等向量的定义,以及向量的模的计算,考查理解能力和数形结合思想.
13.11
【分析】画图列举即可
【详解】马在处有两条路可走,在处有三条路可走,在处有八条路可走.如图,以点为起点作向量,共3个;以点为起点作向量,共8个所以共有11个.
故填11
【点睛】本题考查向量的概念,考查数形结合思想是基础题
14. 、、、、、、、; 、、
【分析】根据单位向量、模、相等向量的概念结合图形进行分析求解.
【详解】(1)、由题意可知,,所以单位向量有、、、、、、、共个;
(2)、由图可知,在长方体中,,,所以左右两个侧面的对角线长度均为,即,所以模为的向量有:、、、、、、、;
(3)、由图可知,与相等的向量除它本身外有、、共个.
故答案为: ;、、、、、、、;、、
高中数学人教A版 (2019)必修 第二册6.1 平面向量的概念同步训练题: 这是一份高中数学人教A版 (2019)必修 第二册6.1 平面向量的概念同步训练题,共5页。试卷主要包含了1平面向量的概念》同步练习,下列物理量,、不相等的向量是否一定不平行?, 解析等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册7.1 复数的概念随堂练习题: 这是一份高中数学人教A版 (2019)必修 第二册7.1 复数的概念随堂练习题,共8页。试卷主要包含了单选题,填空题,多选题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示练习: 这是一份高中数学人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示练习,共11页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。