初中数学人教版八年级下册18.2.1 矩形教学设计
展开矩形及其性质
一、内容和内容解析
(一)内容
矩形的概念,矩形的性质,直角三角形斜边上的中线等于斜边的一半.
(二)内容解析
有平行四边形的定义作基础,教科书接受属加种差的方法,将平行四边形的角特殊化得到矩形的概念.我们探究平行四边形的性质时,从四边形的要素即边、角、对角线等方面进行争辩,探究矩形的性质也依据这个思路进行,这也是争辩其他的特殊平行四边形性质的思路.将平行四边形的一条边绕一个端点旋转,当一个角变为直角时,其余三个角也变为直角,对角线由不等变为相等,这样利用图形的变换从一般到特殊进行演化,通过合情推理得出猜想,之后再通过演绎推理进行证明,这样的争辩思路和方法对其他的特殊平行四边形的学习有借鉴作用.
在探究并证明三角形的中位线定理时,通过构造平行四边形,把三角形中的问题转化为平行四边形的性质得到三角形的中位线定理;平行四边形特殊化成矩形后,三角形也特殊化成直角三角形,“直角三角形斜边上的中线等于斜边的一半”自然可以通过矩形的性质得到,进一步体现了四边形与三角形间的联系.
基于以上分析,可以确定本节课的教学重点是:矩形特殊性质的发觉、证明与初步应用.
二、目标和目标解析
(一)教学目标
1.理解矩形的概念.
2.探究并证明矩形的性质,会用矩形性质解决相关问题.
3.理解“直角三角形斜边上的中线等于斜边的一半”.
(二)目标解析
1.达成目标1的标志是:知道矩形是将一个角特殊化成直角的平行四边形.
2.达成目标2的标志是:会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.
3.达成目标3的标志是:能构造矩形理解“直角三角形斜边上的中线等于斜边的一半”,能运用这个结论解决简洁的问题.
三、教学问题诊断分析
在学校时,同学对矩形已有初步生疏,但是往往只是把矩形当作独立的个体,未将其与平行四边形联系起来,教学时要从图形变换动身,从一般到特殊的角度重新建立起矩形与平行四边形的联系,并从矩形的有关要素方面提出矩形特殊性质的猜想,这对同学来说,有肯定的难度.
尽管之前我们借助平行四边形,利用平行四边形的性质得到了三角形的中位线定理,但是平行四边形特殊化成为矩形之后,同学是否意识到三角形已特殊化成为直角三角形,从而可借助矩形的性质争辩直角三角形的性质,也有肯定的困难.
本节课的教学难点是:矩形性质以及“直角三角形斜边上的中线等于斜边的一半”的探究.
四、教学支持条件分析
借助几何画板将平行四边形特殊化,从而理解矩形与平行四边形的联系,并猜想矩形的特殊性质.
五、教学过程设计
(一)变换图形,形成概念
对于一类几何图形的争辩,我们往往依据从一般到特殊的思路进行,比如争辩三角形时,我们先争辩一般三角形,再将三角形的有关要素特殊化,我们争辩了把边特殊化得到的等腰三角形、把角特殊化得到的直角三角形,对于平行四边形的争辩,我们也可以依据这个思路进行.
问题1 把平行四边形的一个角特殊化成直角,我们得到一个什么样的图形呢?这个图形我们学校学过吗?你能从这个图形与平行四边形的关系方面给出它的定义吗?
师生活动:老师利用几何画板将平行四边形的一条边绕一个端点旋转,当一个角变为直角时,让同学观看所形成的图形,同学从这个图形与平行四边形的关系方面给出它的定义,老师板书概念:有一个角是直角的平行四边形叫做矩形,也就是长方形.
设计意图:借助几何画板的动态演示,让同学直观感知角的变化带来平行四边形的转变,体会矩形与平行四边形间的关系,自然引出概念.
追问1:学校中学习过的长方形是矩形吗?正方形是矩形吗?
追问2:生活中存在这样的图形吗?试举例说明.
师生活动:同学回答、举例,老师出示图片补充.
设计意图:建立学校学习的长方形与矩形间的联系;让同学感知生活矩形无处不在,激发同学的学习爱好.
(二)探究性质,深化认知
问题2 生活中有大量的矩形存在,是由于矩形不仅具有平行四边形的性质,而且还有一般平行四边形不具有的特殊性质.回忆我们探究平行四边形性质的思路,你认为应从哪些方面探究矩形的性质呢?
追问1:如图1,矩形ABCD的边、角、对角线方面是否有不同于一般平行四边形的特殊性质?你能得出有关性质猜想吗?
师生活动:老师利用几何画板再次演示由平行四边形转化为矩形的过程,同学从边、角、对角线方面进行思考、争辩、沟通,得出猜想.老师利用几何画板的测量功能,初步验证同学的猜想.
猜想1:矩形的四个角都是直角;猜想2:矩形的对角线相等.
设计意图:借助动态演示,同学易于发觉边、角、对角线方面与平行四边形不同的性质,用几何画板进行初步验证,增加了同学的成就感,也激发了进一步求证的欲望.
追问2:你能证明这些猜想吗?
师生活动:猜想1的证明同学结合定义口头完成.猜想2的证明方法较多,利用勾股定理、三角形全等、构造等腰三角形利用等腰三角形的三线合一都可进行证明.鼓舞同学尝试不同的证明方法.
设计意图:让同学进一步体会证明的必要性,完整地体会几何争辩的“观看——猜想——证明”过程;进一步培育同学的发散性思维.
追问3:矩形是轴对称图形吗?假如是,指出它的对称轴.
追问4:为什么矩形的被子和床单可以反复折叠仍旧是矩形?请你用一张矩形纸片做模拟试验,并说明缘由.
师生活动:同学利用折叠矩形纸片动手感知,并指出两条对称轴.
设计意图:引导同学从轴对称方面进一步领悟矩形的特殊性.
追问4:在图1的矩形中有哪些三角形?它们分别是什么三角形?它们之间有什么关系?
师生活动:同学找出其中的直角三角形与等腰三角形,并说出全等的三角形,面积相等的三角形.
设计意图:让同学在学习了矩形的性质后对矩形有一个整体感知.
问题3 在前面的学习中,我们通过构造平行四边形,把三角形中的问题转化为平行四边形的性质得到三角形的中位线定理;平行四边形特殊化成矩形后,三角形也特殊化成直角三角形,你能结合图2,发觉直角三角形ABC的一些特殊性质吗?
师生活动:同学争辩沟通,得到性质:直角三角形斜边上的中线等于斜边的一半.
设计意图:进一步体会利用特殊平行四边形争辩特殊三角形的策略,得到直角三角形斜边上中线的性质.
追问:如图3,在直角三角形草地上修两条相互交叉的小路BO,EF,路口端点处E,F,O分别为三角形草地的三边中点,小路BO,EF的长度相等吗?请说明理由.
师生活动:同学思考、回答,老师适时点拨.
设计意图:把利用平行四边形争辩出的三角形的两共性质放在一起应用,准时巩固新知,同时体会这两共性质的应用价值.
(三)运用性质,解决问题
例1 如图4,矩形ABCD的对角线AC,BD相交于点O,,.求矩形的对角形线的长.
追问1:你还能得到哪些线段的长度和哪些角的度数?
追问2:若在例1的条件下,过点A作AE⊥BD于点E,求DE的长.
师生活动:引导同学分析矩形ABCD的对角线的性质,以及给其中的三角形带来的变化.
设计意图:运用矩形的性质解决问题,进一步体会矩形中的角、线段、三角形之间的关系.
(四)归纳小结,反思提高
师生一起回顾本节课所学的主要内容,并请同学回答以下问题:
1.矩形的概念是什么?矩形有哪些性质?它是轴对称图形吗?
2.由矩形的性质可以得到直角三角形的什么性质?
3.学校我们已接触过矩形(长方形),这节课我们是从哪方面对矩形下定义的?我们是如何探究矩形的性质的?
设计意图:问题(1)(2)引导同学回顾本节课的学问,问题(3)挂念同学梳理特殊的平行四边形接受属加种差的下定义方法,体会矩形与平行四边形的联系,以及矩形性质的探究角度(边、角、对角线三个方面)和探究思路(观看——猜想——证明),为后续其他特殊平行四边形的探究作好铺垫.
(五)布置作业
课后习题
六、目标检测设计
1.矩形具有而平行四边形不肯定具有的性质是( )
A.内角和是360度 B.对角相等
C.对边平行且相等 D.对角线相等
设计意图:考查矩形的性质,明确矩形与一般平行四边形的区分与联系.
2.在Rt△ABC中,,AB=5,BC=12,D是AC边上的中点,连接BD,则BD长为 .
设计意图:考查直角三角形斜边上中线的性质.
3.如图,在矩形ABCD中,AE∥BD,且交CB的延长线于点E.求证:.
设计意图:考查矩形的性质的综合运用,由于证法不唯一,可训练同学的发散性思维.
4.如图,矩形ABCD的对角线AC,BD相交于点O,AE⊥BD于E,,cm.
(1)求∠BOC的度数;
(2)求△DOC的周长.
设计意图:主要考查三角形全等,直角三角形、等边三角形、矩形的性质的综合运用.
初中数学湘教版八年级下册2.5.1矩形的性质教学设计: 这是一份初中数学湘教版八年级下册<a href="/sx/tb_c95353_t8/?tag_id=27" target="_blank">2.5.1矩形的性质教学设计</a>,共10页。
初中人教版18.2.1 矩形教案设计: 这是一份初中人教版18.2.1 矩形教案设计,共2页。
初中人教版18.2.2 菱形教案: 这是一份初中人教版18.2.2 菱形教案,共5页。教案主要包含了内容和内容解析,目标和目标解析,教学问题诊断分析,教学过程设计,目标检测设计等内容,欢迎下载使用。