人教A版 (2019)选择性必修 第三册第六章 计数原理6.2 排列与组合复习练习题
展开专题08 排列与组合
A组 基础巩固
1.(2021·全国·高二课时练习)现需编制一个八位的序号,规定如下:序号由4个数字和2个x、1个y、1个z组成;2个x不能连续出现,且y在z的前面;数字在1,2,4,8之间选取,可重复选取,且四个数字之积为8,则符合条件的不同的序号种数为( )
A.12 600 B.6 300 C.5 040 D.2 520
2.(2021·全国·高二课时练习)天河区某校开展学农活动时进行劳动技能比赛,通过初选,选出甲、乙、丙、丁、戊共5名同学进行决赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说“很遗憾,你和乙都未拿到冠军”;对乙说“你当然不是最差的”,试从这个回答中分析这5人的名次排列顺序可能出现的种类有( )
A.54种 B.60种 C.72种 D.96种
3.(2022·湖北·黄石市有色第一中学高三期末)在2021中俄高加索联合军演的某一项演练中,中方参加演习的有4艘军舰,5架飞机;俄方有3艘军舰,6架飞机.若从中、俄两方中各选出2个单位(1架飞机或一艘军舰都作为一个单位,所有的军舰两两不同,所有的飞机两两不同),且选出的四个单位中恰有一架飞机的不同选法共有( )
A.51种 B.168种 C.224种 D.336种
4.(2022·甘肃靖远·高三期末(理))第24届冬季奥运会将于2022年2月4日至2022年2月20日在北京市和河北省张家口市举行.现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪馆、国家速滑馆、首钢滑雪大跳台三个场馆参加活动,要求每个场馆都有人去,且这四人都在这三个场馆,则甲和乙都没被安排去首钢滑雪大跳台的种数为( )
A.12 B.14 C.16 D.18
5.(2022·全国·高二)2021年1月10日,是我国设立的第一个“中国人民警察节”,2020年,某省人民群众对公安机关的满意度测评居首位.为感谢公安干警的辛勤付出,6名学生到甲、乙、丙、丁4个值勤岗亭做志愿者,每名学生只去1个值勤岗亭,且每个值勤岗亭均有志愿者值勤.若甲值勤岗亭安排3名志愿者,则不同的安排方法共有( )
A.60种 B.96种 C.120种 D.240种
6.(2022·河南·鹤壁高中模拟预测(理))为了落实五育并举,全面发展学生素质,学校准备组建书法、音乐、美术、体育社团,现将5名同学分配到这4个社团进行培训,每名同学只分配到1个社团,每个社团至少分配1名同学,则不同的分配方案共有( )
A.60种 B.120种 C.240种 D.480种
7.(2022·四川·宁南中学高二开学考试(理))某工程队有卡车、挖掘机、吊车、混凝土搅拌车各一辆,将它们全部派往3个工地进行作业,每个工地至少派一辆,则不同的派法种数是( )
A.18 B.9 C.27 D.36
8.(2021·广东天河·高三阶段练习)通常,我国民用汽车号牌的编号由两部分组成:第一部分为汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,笫二部分为由阿拉伯数字与英文字母组成的序号.其中序号的编码规则为:①由0,1,2,…,9这10个阿拉伯数字与除,之外的24个英文字母组成;②最多只能有2个位置是英文字母,如:粤,则采用5位序号编码的粤牌照最多能发放的汽车号牌数为( )
A.586万张 B.682万张 C.696万张 D.706万张
9.(2021·吉林·汪清县汪清第四中学高二阶段练习)将5名实习教师分配到高一年级的3个班实习,每班至少1名,则不同的分配方案有( )
A.30种 B.60种 C.90种 D.150种
10.(2022·山西太原·高三期末(理))从1到10这十个数中任取三个,这三个数的和为奇数的概率为( )
A. B. C. D.
11.(2022·江西上饶·高二期末(理))现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为( )
A. B. C. D.
12.(2022·全国·模拟预测)五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为:宫、商、角、徵、羽.如果从这五个音阶中任取三个音阶,排成一个三个音阶的音序,则这个音序中必含“徵”这个音阶的概率为( )
A. B. C. D.
13.(2022·辽宁沈阳·高二期末)有6本不同的书,按下列方式进行分配,其中分配种数正确的是( )
A.分给甲、乙、丙三人,每人各2本,有15种分法;
B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;
C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;
D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;
14.(2020·全国·一模)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( )
A. B. C. D.
15.(2021·重庆一中模拟预测)现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( )
A.234 B.152 C.126 D.108
16.(2017·江西南昌·一模(理))某校迎新晚会上有个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有
A.种 B.种 C.种 D.种
17.(2021·吉林白城·高二期末(理))某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了一张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位不相邻(相邻包括左右相邻和前后相邻)的概率约为( )
A.0.87 B.0.89 C.0.91 D.0.92
18.(2021·全国·绵阳中学模拟预测(理))某校为庆祝建党一百周年,要安排一场共11个节目的文艺晚会,除第1个节目和最后一个节目已经确定外,3个音乐节目要求排在2,6,9的位置,3个舞蹈节目必须相邻,3个曲艺节目没有要求,共有不同的演出顺序( )种
A.144 B.192 C.216 D.324
19.(2021·全国·)某班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,3个音乐节目恰有两个节目连排,则不同排法的种数是( )
A.240 B.188 C.432 D.288
20.(2020·浙江·)某公司计划举办一场晚会,节目有1个朗诵,1个武术表演,2个话剧表演,3个歌舞表演,要求第一个节目为歌舞表演,最后一个节目为话剧表演,且相同种类的节目不相邻,则不同的节目演出顺序的种数为( )
A.432 B.252 C.192 D.180
21.(2021·福建·永安市第三中学高中校高二阶段练习)将3张不同的电影票全部分给10个人,每人至多一张,则不同的分法种数是( )
A. B.120 C.240 D.720
22.(2021·安徽滁州·高二期中(理))如图,一块长方形花圃,计划在A、B、C、D四个区域分别种上3种不同颜色鲜花中的某一种,允许同一种颜色的鲜花使用多次,但相邻区域必须种不同颜色的鲜花,不同的种植方案有( )
A.9种 B.8种 C.7种 D.6种
23.(2021·全国·)如图,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有多少种( )
A.280 B.180 C.96 D.60
B组 能力提升
24.(2022·浙江·高三专题练习)将2个2021,3个2019,4个2020填入如图的九宫格中,使得每行数字之和、每列数字之和都为奇数,不同的填法有___________种.(用数字回答)
25.(2021·全国·高二课时练习)由数字1,3,4,6,五个数字组成没有重复数字的五位数,所有这些五位数各位数字之和为2640,则______.
26.(2022·浙江·模拟预测)某九位数的各个数位由数字1,2,3组成,其中每个数字各出现3次,且数字1和数字2不能相邻,则符合条件的不同九位数的个数是___.(用数字作答)
27.(2022·全国·高二课时练习)某外语组9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,则不同的选法有________种.
28.(2022·辽宁·高二期末)某地区有3个疫苗接种定点医院,现有10名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少需要2名至多需要4名志愿者,则不同的安排方法共有___________种.
29.(2021·甘肃·兰州市外国语高级中学高三阶段练习(理))5名志愿者进入3个不同的场馆参加工作,则每个场馆至少有一名志愿者的概率为______.
30.(2021·江苏省镇江中学高二期中)习近平总书记在湖南省湘西州花垣县十八洞村考察时,首次提出“精准扶贫”概念,“精准扶贫”已成为我国脱贫攻坚的基本方略.为配合国家“精准扶贫”战略,某省农业厅派出6名农业技术专家(4男2女)分成两组,到该省两个贫困县参加扶贫工作,若要求女专家不单独成组,且每组至多4人,则不同的选派方案共有__________种.
31.(2022·福建宁德·高二期末)甲、乙、丙3个公司承包5项不同工程,甲、乙公司均承包2项,丙公司承包1项,则共有______种承包方式.
32.(2021·北京市朝阳区人大附中朝阳分校高三阶段练习)将5名北京冬奥会志愿者全部分配到花样滑冰、短道速滑、高山滑雪3个项目进行培训,每名志愿者只分配到一个项目,每个项目至少分配一名志愿者,并且甲、乙两名志愿者必须分配在一起,则共有种不同的分配方式___________.
33.(2022·全国·高二)新年音乐会安排了2个唱歌、3个乐器和2个舞蹈共7个节目,则2个唱歌节目不相邻的节目单共有___________种.(用数字表示)
34.(2021·上海奉贤·一模)从集合中任取3个不同元素分别作为直线方程中的,则经过坐标原点的不同直线有__________条(用数值表示)
35.(2020·上海市中国中学高三期中)四名男生和两名女生排成一排,若有且只有两位男生相邻,则不同排法的种数是________
36.(2021·福建省龙岩第一中学高二阶段练习)西湖龙井茶素来有“绿茶皇后”“十大名茶之首”的称号,按照产地品质不同,西湖龙井茶可以分为“狮、龙、云、虎、梅”五个字号.某茶文化活动给西湖龙井茶留出了三个展台的位置,现在从五个字号的产品中任意选择三个字号的茶参加展出活动,如果三个字号中有“狮、梅”,则“狮”字号茶要排在“梅”字号茶前(不一定相邻),则不同的展出方法有_____________种.(用数字作答)
37.(2021·吉林·汪清县汪清第四中学高二阶段练习)某篮球队友12名队员,有6名只打前锋,4名只打后卫,甲、乙两人既能打前锋又能打后卫(出场阵容为3名前锋,2名后卫),则出场阵容共有___________种.
38.(2021·北京丰台·高二期中)现要从抗击疫情的名志愿者中选名志愿者,分别承担“防疫宣传讲解”、“站岗执勤”和“发放口罩”三项工作,其中志愿者甲不能承担“防疫宣传讲解”工作,则不同的选法有_____种.(结果用数字作答)
39.(2021·全国·)学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,则不同的排法有_____种.(用数字作答)
40.(2022·全国·)如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.
41.(2020·山西·夏县第二中学)如图,用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻区域必须涂不同的颜色,不同的涂色方案有________种.
42.(2020·上海·)如图,用6种不同颜色对图中A,B,C,D四个区域染色,要求同一区域染同一色,相邻区域不能染同一色,允许同一颜色可以染不同区域,则不同的染色方案有________种.
专题6.2 排列与组合-2023-2024学年高二数学讲练测(人教A版选择性必修第三册): 这是一份专题6.2 排列与组合-2023-2024学年高二数学讲练测(人教A版选择性必修第三册),文件包含专题62排列与组合举一反三人教A版选择性必修第三册原卷版docx、专题62排列与组合举一反三人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
【寒假作业】人教A版2019 高中数学 高二寒假提升训练专题08 二项式定理(八大考点)-练习: 这是一份【寒假作业】人教A版2019 高中数学 高二寒假提升训练专题08 二项式定理(八大考点)-练习,文件包含寒假作业人教A版2019高中数学高二寒假提升训练专题08二项式定理八大考点原卷版docx、寒假作业人教A版2019高中数学高二寒假提升训练专题08二项式定理八大考点解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
数学选择性必修 第三册6.2 排列与组合精品巩固练习: 这是一份数学选择性必修 第三册6.2 排列与组合精品巩固练习,文件包含专题64排列与组合重难点题型检测举一反三人教A版选择性必修第三册解析版docx、专题64排列与组合重难点题型检测举一反三人教A版选择性必修第三册原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。