![2022年冀教版八年级数学下册第二十一章一次函数月考练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12764680/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十一章一次函数月考练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12764680/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十一章一次函数月考练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12764680/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共28页。试卷主要包含了已知一次函数y=kx+b等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )A. B.C. D.2、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.3、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )A.x>﹣3 B.x<﹣3 C.x>0 D.x<04、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+605、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣16、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-7、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345… x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是( )A.x>0 B.x<0 C.x<﹣1 D.x>﹣18、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )A.小于0 B.等于0 C.大于0 D.非负数9、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )A.(2,2) B.(,) C.(,) D.(,)10、已知点,都在直线上,则、大小关系是( )A. B. C. D.不能计较第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做___.2、一次函数y=kx+b(k≠0)的图象是_______.3、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.4、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.5、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.2、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.3、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)(1)a= ,甲的速度是 km/h.(2)求线段AD对应的函数表达式.(3)直接写出甲出发多长时间,甲乙两车相距10km.4、如图,直线l经过点A(﹣1,﹣2)和B(0,1).(1)求直线l的函数表达式;(2)线段AB的长为_____;(3)在y轴上存在点C,使得以A、B、C为顶点的三角形是以AB为腰的等腰三角形,请直接写出点C的坐标.5、已知y与成正比例,且当时,;(1)求出y与x之间的函数关系式;(2)当时,求y的值;(3)当时,求x的取值范围. -参考答案-一、单选题1、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;故选B.【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.2、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.3、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y=kx+b与x轴交点坐标为(﹣3,0),∴由图象可知,当x>﹣3时,y>0,∴不等式kx+b>0的解集是x>﹣3.故选:A.【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.4、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.5、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、C【解析】略7、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.8、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.9、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点D为OB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx,∴4=4k,解得k=1,∴直线AO的解析式为y=x,过点D作DE⊥AO,交y轴于点E,交AO于点F,∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=OD,∴DF=FE,∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,设CE的解析式为y=mx+n,∴,解得,∴直线CE的解析式为y=x+2,∴,解得,∴使四边形PDBC周长最小的点P的坐标为(,),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.10、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线,k=-2<0,∴y随着x的增大而减小,∵点,都在直线上,-4<2,∴,故选:C.【点睛】此题考查了一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟记性质是解题的关键.二、填空题1、待定系数法【解析】略2、一条直线【解析】略3、432【解析】【分析】设甲的速度为v甲,乙的速度为v乙,根据题意可得v甲+v乙=100①,可求出乙追上甲的时间为4.8h,根据题意可得4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②求出两车的速度即可解答.【详解】解:如图:设甲的速度为v甲,乙的速度为v乙,OD段:两人的速度和为:200÷2=100(km/h),即v甲+v乙=100①,此时乙休息1h,则E处的横坐标为:2+1=3,则乙用了:7.8-3=4.8(h)追上甲,则4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②得V甲=40,V乙=60,则第一次相遇是在7.8h时,距离A地:4.8×(1+50%)×60=432(km).故答案为:432.【点睛】本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.4、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.5、##【解析】【分析】分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.【详解】解:如图,点A点B的坐标分别是(4,8),(12,0),,设直线的解析式为,解得直线的解析式为设直线的解析式为,解得直线的解析式为,则即为的重心即解得故答案为:【点睛】本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.三、解答题1、(0,)【解析】【分析】过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,∵∠ACB=90°,∴∠ACF+∠BCE=90°,∵AF⊥x轴,BE⊥x轴,∴ ,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE,在△AFC和△CEB中, ,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE, ∵点C的坐标为(-2,0),点A的坐标为(-6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF-OC=4,OE=CE-OC=2-1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b, ,解得: ,∴直线BC的解析式为:y=x+ ,令 ,则 ,∴ D(0,).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.2、 (1)见解析(2)(3)6【解析】【分析】(1)作出过点E的l的垂线即可解决;(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.(1)所作出点E的对应点E′如下图所示:(2)设直线l交x轴于点D在y=2x-2中,令y=0,得x=1;令x=0,得y=-2则点D、点G的坐标分别为(1,0)、(0,-2)∴OD=1,OG=2由对称性的性质得:,∵GE∥x轴∴∴∴∴设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)∴EG=a∴∴在Rt△中,由勾股定理得:解得:当时,所以点P的坐标为(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.3、 (1)3.5小时,76;(2)线段AD对应的函数表达式为.(3)甲出发或或或小时,甲乙两车相距10km.【解析】【分析】(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得解方程即可;(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.(1)解:∵3小时到货站,在货站装货耗时半小时,∴小时,甲车行驶的时间为:0.5+4.5=5小时,甲车速度=千米/时,故答案为:3.5小时,76;(2)点A表示的路程为:76×0.5=38,设AD解析式为:,把AD两点坐标代入解析式得:,解得:,线段AD对应的函数表达式为.(3)甲出发乙未出发,∴76t=10,∴t=,乙出发后;设乙车的速度为vkm/h,3v+(v-40)×1=380解得v=105km/h,∴点B(3,315)设OB解析式为,代入坐标得:,∴OB解析式为∴,化简为:或,解得或,∵CD段乙车速度为105-40=65km/h,设CD的解析式为代入点D坐标得,,解得:,∴CD的解析式为,∴,解得:,∵甲提前出发30分钟,,,,甲出发或或或小时,甲乙两车相距10km.【点睛】本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.4、 (1)y=3x+1(2)(3)C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【解析】【分析】(1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l的函数表达式为y=3x+1;(2)根据题意由A(﹣1,﹣2),B(0,1),可得AB=;(3)由题意设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,即=,可解得C(0,﹣5);②若AB=BC,得=|m﹣1|,解得C(0,﹣+1)或(0,+1).【详解】解:(1)设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入得:,解得,∴直线l的函数表达式为y=3x+1;(2)∵A(﹣1,﹣2),B(0,1),∴AB==;故答案为:.(3)设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,如图:∴=,解得m=1(与B重合,舍去)或m=﹣5,∴C(0,﹣5);②若AB=BC,如图:∴=|m﹣1|,解得m=﹣+1或m=+1,∴C(0,﹣+1)或(0,+1),综上所述,以A、B、C为顶点的三角形是以AB为腰的等腰三角形,则C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【点睛】本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.5、 (1)(2)(3)【解析】【分析】(1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;(2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;(3)通过解不等式2x+4<−2即可.(1)解:设y=k(x+2)(k≠0),当x=1,y=6得k(1+2)=6,解得k=2,所以y与x之间的函数关系式为y=2x+4;(2)x=−3 时,y=2×(−3)+4=−2;(3)y<−2 时,2x+4<−2,解得.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共29页。试卷主要包含了下列函数中,属于正比例函数的是,如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共28页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共30页。试卷主要包含了下列函数中,一次函数是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)