初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习
展开八年级数学下册第二十一章一次函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
A. B.
C. D.
2、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
3、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
4、下列函数中,属于正比例函数的是( )
A. B. C. D.
5、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
6、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )
A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+60
7、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
8、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
9、已知点,在一次函数的图像上,则m与n的大小关系是( )
A. B. C. D.无法确定
10、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.
(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;
(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.
2、如图,在平面直角坐标系xOy中,直线l1,l2分别是关于x,y的二元一次方程a1x+b1y=c1,a2x+b2y=c2的图象,则二元一次方程组的解为___.
3、 “”是一款数学应用软件,用“”绘制的函数和的图像如图所示.若,分别为方程和的一个解,则根据图像可知____.(填“”、“”或“”).
4、一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
由含有未知数x和y的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.
5、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
2、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点
(1)若此一次函数图象经过平行四边形边的中点,求的值
(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
3、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)两车经过 h相遇;
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
4、已知y与成正比例,且当时,;
(1)求出y与x之间的函数关系式;
(2)当时,求y的值;
(3)当时,求x的取值范围.
5、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)点在轴上,且是等腰三角形,请直接写出点的坐标.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.
【详解】
A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;
D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;
故选:D.
【点睛】
此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
2、B
【解析】
【分析】
当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
【详解】
∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
∴①正确;
∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
∴乙车比甲车晚出发1小时,却早到1小时;
∴②正确;
设,
∴300=5m,
解得m=60,
∴;
设,
∴
解得,
∴;
∴
解得t=2.5,
∴2.5-1=1.5,
∴乙车出发后1.5小时追上甲车;
∴③错误;
当乙未出发时,,
解得t=;
当乙出发,且在甲后面时,,
解得t=;
当乙出发,且在甲前面时,,
解得t=;
当乙到大目的地,甲自己行走时,,
解得t=;
∴④错误;
故选B.
【点睛】
本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
3、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
4、D
【解析】
【分析】
根据正比例函数的定义逐个判断即可.
【详解】
解:A.是二次函数,不是正比例函数,故本选项不符合题意;
B.是一次函数,但不是正比例函数,故本选项不符合题意;
C.是反比例函数,不是正比例函数,故本选项不符合题意;
D.是正比例函数,故本选项符合题意;
故选:D.
【点睛】
本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.
5、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
6、C
【解析】
【分析】
根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.
【详解】
解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,
∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,
∴y=100−2(x-60)=-2x+220,
故选C.
【点睛】
此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.
7、A
【解析】
【分析】
由 可得一次函数的性质为随的增大而增大,从而可得答案.
【详解】
解:点和点是一次函数图象上的两点,,
随的增大而增大,
即一定为正数,
故选A
【点睛】
本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
8、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
b=2-5k+b=3 ,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
9、A
【解析】
【分析】
根据一次函数的性质,y随x增大而减小判断即可.
【详解】
解:知点,在一次函数的图像上,
∵-2<0,
∴y随x增大而减小,
∵,
∴,
故选:A.
【点睛】
本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.
10、A
【解析】
【分析】
根据一次函数的性质得出y随x的增大而减小,进而求解.
【详解】
由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
∵-3<2,
∴y1>y2,
故选:A.
【点睛】
本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
二、填空题
1、 3 ≤n<
【解析】
【分析】
(1)根据题意和图象,可以得到区域W内的整点个数;
(2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.
【详解】
解:(1)由图象可得,
区域W内的整点的坐标分别为(6,1),(6,2),(7,1),
即区域W内的整点个数是3个,
故答案为:3;
(2)∵直线y=kx+b过点A(5,3),点C(9,0),
∴,
∴,
即直线y=kx+b的表达式是y=﹣x+,
设平移后的直线解析式是y=﹣x+m,
把(6,2)代入得,2=﹣+m,解得m=,则﹣=,
把(6,1)代入得,1=﹣+m,解得m=,则﹣=,
由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.
故答案为:≤n<.
【点睛】
本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.
2、
【解析】
【分析】
本题可以通过直线与方程的关系得到方程组的解.
【详解】
解:因为直线l1,l2分别是关于x,y的二元一次方程a1x+b1y=c1,a2x+b2y=c2的图象,其交点为(-2,1),
所以二元一次方程组的解为,
故答案为:.
【点睛】
本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.
3、<
【解析】
【分析】
根据方程的解是函数图象交点的横坐标,结合图象得出结论.
【详解】
解:∵方程-x2(x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,
-x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,
如图所示:
由图象可知:a<b.
故答案为:<.
【点睛】
本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.
4、 一次函数 交点
【解析】
略
5、
【解析】
【分析】
利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.
【详解】
解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,
∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,
故答案为x≥2.
【点睛】
本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
三、解答题
1、函数的解析式为y=2x+7或y=-2x+3
【解析】
【分析】
分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.
【详解】
解:当x=-3,y=1;x=1,y=9,
∴,
解方程组得;
当x=-3,y=9;x=1,y=1,
∴,
解方程组得,
∴函数的解析式为y=2x+7或y=-2x+3.
【点睛】
本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.
2、 (1)k=;
(2)−1<k<,且k≠0.
【解析】
【分析】
(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;
(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.
(1)
解:设OA的中点为M,
∵O(0,0),A(4,0),
∴OA=4,
∴OM=2,
∴M(2,0),
∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,
∴,
解得:k=;
(2)
如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,
当一次函数y=kx+b的图象过B、P两点时,
代入表达式y=kx+b得到:,
解得:k=-1,
当一次函数y=kx+b的图象过A、P两点时,
代入表达式y=kx+b得到:,
解得:k=,
所以−1<k<,
由于要满足一次函数的存在性,
所以−1<k<,且k≠0.
【点睛】
本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
3、 (1)900
(2)4
(3)快车的速度为150km/h,慢车的速度为75km/h
(4)y=225x﹣900,自变量x的取值范围是4≤x≤6
【解析】
【分析】
(1)由函数图象可以直接求出甲乙两地之间的距离;
(2)由函数图象的数据就即可得出;
(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;
(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.
(1)
根据图象,得
甲、乙两地之间的距为900km.
故答案为:900;
(2)
由函数图象,当慢车行驶4h时,慢车和快车相遇.
故答案为:4;
(3)
由题意,得
快车与慢车的速度和为:900÷4=225(km/h),
慢车的速度为:900÷12=75(km/h),
快车的速度为:225﹣75=150 (km/h).
答:快车的速度为150km/h,慢车的速度为75km/h;
(4)
由题意,得快车走完全程的时间按为:900÷150=6(h),
6h时两车之间的距离为:225×(6﹣4)=450km.
则C(6,450).
设线段BC的解析式为y=kx+b,由题意,得
,
解得:k=225b=900,
则y=225x﹣900,自变量x的取值范围是4≤x≤6.
【点睛】
本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.
4、 (1)
(2)
(3)
【解析】
【分析】
(1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;
(2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;
(3)通过解不等式2x+4<−2即可.
(1)
解:设y=k(x+2)(k≠0),
当x=1,y=6得k(1+2)=6,
解得k=2,
所以y与x之间的函数关系式为y=2x+4;
(2)
x=−3 时,y=2×(−3)+4=−2;
(3)
y<−2 时,2x+4<−2,
解得.
【点睛】
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
5、 (1)正比例函数的解析式为:,一次函数的解析式为:
(2)或或或
【解析】
【分析】
(1)把点代入可得,再由,可得点 ,即可求解;
(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
(1)
解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
∴,解得:
∴正比例函数的解析式为:,
∵,
∴ ,
∵,
∴ ,
∴点 ,
把点, 代入,得:
b=-53k2+b=4 ,解得: ,
∴一次函数的解析式为:;
(2)
解:当OP=OA=5时,点的坐标为或;
当AP=OA时,过点A作 轴于点C,
∴OC=PC=3,
∴OP=6,
∴点;
当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,
∴点D为AO的中点,即 ,
∵点,
∴点 ,
∴ ,
设点 ,则 ,
∴ ,
∵ ,
∴ ,
即 ,
解得: 或 (舍去)
∴点 ,
综上所述,点P的坐标为或或或.
【点睛】
本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
冀教版八年级下册第二十一章 一次函数综合与测试课时练习: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共30页。试卷主要包含了已知一次函数y=kx+b,一次函数的图象一定经过,一次函数y=mx﹣n等内容,欢迎下载使用。
数学八年级下册第二十一章 一次函数综合与测试同步测试题: 这是一份数学八年级下册第二十一章 一次函数综合与测试同步测试题,共28页。试卷主要包含了已知P1,如图所示,直线分别与轴等内容,欢迎下载使用。
八年级下册第二十一章 一次函数综合与测试课时练习: 这是一份八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了如图所示,直线分别与轴,一次函数y=mx﹣n等内容,欢迎下载使用。