初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习
展开这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共23页。试卷主要包含了若一次函数,若实数等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
2、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
A.小于0 B.等于0 C.大于0 D.非负数
3、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )
①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
A.1 B.2 C.3 D.4
4、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
5、若实数、满足且,则关于的一次函数的图像可能是( )
A. B. C. D.
6、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
7、关于一次函数 ,下列说法不正确的是( )
A.图象经过点(2,0) B.图象经过第三象限
C.函数y随自变量x的增大而减小 D.当x≥2时,y≤0
8、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
9、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
10、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将一次函数的图像向上平移5个单位后,所得图像的函数表达式为______.
2、在平面直角坐标系中,已知一次函数的图象经过、两点,则________填“”“”或“
3、一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
由含有未知数x和y的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.
4、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.
5、如图,一次函数与的图象相交于点,则方程组的解是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
(1)若,请写出与的函数关系式.
(2)若,请写出与的函数关系式.
(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
3、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)直接写出A型桌椅每套 元,B型桌椅每套 元;
(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.
①求y与x之间的函数关系,并直接写出x的取值范围;
②求出总费用最少的购置方案.
4、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.
(1)甲车行驶的速度是 千米/小时.
(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.
(3)直接写出两车相距85千米时x的值.
5、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
-参考答案-
一、单选题
1、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
2、C
【解析】
【分析】
一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
【详解】
解:如图,函数的图象经过第一、二、三象限,
则函数的图象与轴交于正半轴,
故选C
【点睛】
本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
3、C
【解析】
【分析】
仔细观察图象:①观察函数图象可以直接得到答案;
②观察函数图象可以直接得到答案;
③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
【详解】
解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
∴4a+b=4c+d
∴d-b=4(a-c),故④正确.
综上所述,正确的结论有3个.
故选:C.
【点睛】
本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
4、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
5、B
【解析】
【分析】
根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
【详解】
解:∴实数、满足,
∴、互为相反数,
∵,
∴,,
∴
∴一次函数的图像经过二、三、四象限,
故选:B.
【点睛】
本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
6、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
7、B
【解析】
【分析】
当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.
【详解】
解:当 时, ,
∴图象经过点(2,0),故A正确,不符合题意;
∵ ,
∴图象经过第一、二、四象限,故B错误,符合题意;
∴函数y随自变量x的增大而减小,故C正确,不符合题意;
当 时, ,
∴当x≥2时,y≤0,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
8、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
9、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
10、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
二、填空题
1、
【解析】
【分析】
直接利用一次函数平移规律“上加下减”进而得出即可.
【详解】
解:∵一次函数的图像向上平移5个单位,
∴所得图像的函数表达式为:
故答案为:
【点睛】
本题考查了一次函数平移,掌握平移规律是解题的关键.
2、
【解析】
【分析】
根据一次函数的性质,当时,y随x的增大而减小,即可得答案.
【详解】
解:一次函数中,
随x的增大而减小,
,
.
故答案为:.
【点睛】
本题考查了一次函数的性质,关键是掌握一次函数,当时,y随x的增大而增大,当时,y随x的增大而减小.
3、 一次函数 交点
【解析】
略
4、y=x+7
【解析】
【分析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.
∴直线AB对应的函数表达式为y=x+7.
故答案为:y=x+7.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
5、##
【解析】
【分析】
先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.
【详解】
解:把P(m,5)代入y=x+3得m+3=5,解得m=2,
所以P点坐标为(2,5),
所以方程组的解是,
故答案为:.
【点睛】
本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.
三、解答题
1、(1);(2)5;(3)点P的坐标为(,-)或(-,)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB==4,
∵MN垂直平分AB,
∴BN=AN=AB=2.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h==.
△PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
解得m=± ,
故点P的坐标为(,-)或(-,).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,).
综上所述,点P的坐标为(,-)或(-,).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
2、 (1)
(2)
(3)13吨
【解析】
【分析】
(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;
(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;
(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.
(1)
根据题意可知:
当时,;
(2)
根据题意可知:
当时,;
(3)
当时,,
的最大值为(元,,
该户当月用水超过8吨.
令中,则,
解得:.
答:这个月该户用了13吨水.
【点睛】
本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.
3、 (1)A型桌椅每套600元,B型桌椅每套800元;
(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元
【解析】
【分析】
(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;
(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;
②根据一次函数的性质求解即可.
(1)
解:设A型桌椅每套a元,B型桌椅每套b元,
根据题意,得:,
解得:,
所以A型桌椅每套600元,B型桌椅每套800元;
(2)
解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,
∵A型桌椅不少于12套,B型桌椅不少于6套,
∴,解得:12≤x≤14,
所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);
②由①知y=-200x+16200,且-200<0,
∴y随x的增大而减小,
∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,
即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.
【点睛】
本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.
4、 (1)60
(2)y=20x-40();
(3)或
【解析】
【分析】
(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;
(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;
(3)分两种情况讨论:将x=85代入AB的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米.
(1)
解:甲车行驶的速度是(千米/小时),
故答案为:60;
(2)
解:设甲出发x小时后被乙追上,根据题意:
60x=80(x-0.5),
解得x=2,
∴甲出发2小时后被乙追上,
∴点A的坐标为(2,0),
∵,
∴B(6.5,90),
设AB的解析式为y=kx+b,
∴,解得,
∴AB的解析式为y=20x-40();
(3)
解:根据题意得:20x-40=85或60x=480-85,
解得x=或.
∴两车相距85千米时x为或.
【点睛】
此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.
5、函数的解析式为y=2x+7或y=-2x+3
【解析】
【分析】
分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.
【详解】
解:当x=-3,y=1;x=1,y=9,
∴,
解方程组得;
当x=-3,y=9;x=1,y=1,
∴,
解方程组得,
∴函数的解析式为y=2x+7或y=-2x+3.
【点睛】
本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点,都在直线上,则等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共29页。试卷主要包含了下列函数中,属于正比例函数的是,如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了如图所示,直线分别与轴,一次函数y=mx﹣n等内容,欢迎下载使用。