人教版八年级上册11.3.2 多边形的内角和教学设计
展开能力目标:
1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。
3、通过探索多边形的内角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
情感目标:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
教学重点:探索多边形的内角和公式
教学难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和。
教学方法:引导讲授法
教学过程
复习导入
1、在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
2、在多边形中连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
3、三角形的内角和是180度.
在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?
多边形的内角和
你会利用三角形的内角和计算四边形ABCD的内角和吗?请你与同学们交流你的证明思路.
如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
A
B
C
D
可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°。
类比上面的过程,你能推导出五边形和六边形内角和各是多少吗?
请自主完成课本22页观察图11.3-9,填空:
观察下面的图形,填空:
五边形 六边形
从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;
从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;
从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。
n边形的内角和等于(n一2)·180°.
总结:对角线是解决多边形问题的常用辅助线
多边形问题 转化为 三角形问题
探究:
从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?
分法一 如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。
∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。
图1 图2
分法二 如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形。
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°
如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)×180°.
那么对于正多边形来说,又遇到怎样的问题呢?
因为正多边形的每个角相等,所以知道
正多边形的边数,就可以求出每一个内角的度数.
课堂练习
1.八边形的内角和是
2.已知多边形的每一内角为150°,求这个多边形的边数.
解:设这个多边形的边数为n,
根据题意,得
(n-2)×180=150 n
解这个方程,得n= 12
经检验,符合题意
答:这个多边形的边数为12.
3.求下列图形中 x的值
140°
x°
x°
90°
2x °
150 °
120 °
x °
X°
80 °
75 °
120 °
4、多边形内角和为1620°则它为_____边形,
多边形每个内角都 等于120°,则它为_____边形。
5、四边形的内角的度数之比为
2∶3∶5∶8,则各角度数为——。
应用新知
1.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?
2.一个正方形瓷砖,截去一个角后:(1)还剩几个角?(2)剩下的多边形的内角和是多少度?
课堂小结
通过本节课的学习,谈谈你的收获、体会。
作业
P24 1 2 4 5
初中人教版11.3.2 多边形的内角和教学设计及反思: 这是一份初中人教版11.3.2 多边形的内角和教学设计及反思,共6页。教案主要包含了教材分析,教学目标分析,教法和学法分析,教学过程分析,评价分析,设计说明等内容,欢迎下载使用。
初中数学人教版八年级上册第十一章 三角形11.3 多边形及其内角和11.3.1 多边形教案: 这是一份初中数学人教版八年级上册第十一章 三角形11.3 多边形及其内角和11.3.1 多边形教案,共3页。
数学11.3.2 多边形的内角和教案: 这是一份数学11.3.2 多边形的内角和教案,共2页。教案主要包含了教材分析,教学过程设计,板书设计等内容,欢迎下载使用。