高考数学一轮复习:6数列-专题5练习(题型归纳与重难专题突破提升)
展开
这是一份高考数学一轮复习:6数列-专题5练习(题型归纳与重难专题突破提升),文件包含专题05数列求和原卷版docx、专题05数列求和解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
TOC \ "1-3" \h \z \u \l "_Tc150442476" 题型一: 等差、等比数列性质求和 PAGEREF _Tc150442476 \h 3
\l "_Tc150442477" 题型二: 倒序相加求和 PAGEREF _Tc150442477 \h 6
\l "_Tc150442478" 题型三: 错位相减法求和 PAGEREF _Tc150442478 \h 7
\l "_Tc150442479" 题型四: 裂项相消法求和 PAGEREF _Tc150442479 \h 9
\l "_Tc150442480" 题型五: “奇偶项”求和 PAGEREF _Tc150442480 \h 11
\l "_Tc150442481" 题型六: 与两数列“相同项”有关的求和 PAGEREF _Tc150442481 \h 13
知识点总结
1.特殊数列的求和公式
(1)等差数列前n项和公式:
(2)等比数列前n项和公式:
Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(na1q=1,,\f(a11-qn,1-q)=\f(a1-anq,1-q)q≠1.))
2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(2)裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.
常用结论与知识拓展
常见的裂项公式
(1)eq \f(1,nn+1)=eq \f(1,n)-eq \f(1,n+1).
(2)eq \f(1,2n-12n+1)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1))).
(3)eq \f(1,nn+1n+2)=
eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,nn+1)-\f(1,n+1n+2))).
(4)eq \f(1,\r(a)+\r(b))=eq \f(1,a-b)(eq \r(a)-eq \r(b)).
(5)eq \f(1,\r(n)+\r(n+1))=eq \r(n+1)-eq \r(n).
(6)eq \f(2n,2n-12n+1-1)=eq \f(1,2n-1)-eq \f(1,2n+1-1).
例题精讲
等差、等比数列性质求和
已知等差数列满足,,公比不为的等比数列满足,.
(1)求与的通项公式;
(2)设,求的前项和.
设数列是公差不为零的等差数列,其前项和为,.若,,成等比数列.
(1)求及;
(2)设,求数列的前项和.
记递增的等差数列的前项和为,已知,且.
(Ⅰ)求和;
(Ⅱ)设,求数列的前项和.
等差数列的前项和为,满足,.
(1)求的通项公式;
(2)设,求证数列为等比数列,并求其前项和.
已知数列为等比数列,在数列中,,,且.
(1)求数列的通项公式;
(2)若,,求数列的前项和.
已知等差数列的公差不为零,其前项和为,且是和的等比中项,且.
(1)求数列的通项公式;
(2)设数列满足,求的前项和.
倒序相加求和
【要点讲解】如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n项和公式的推导便使用了此法. 用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.
德国大数学家高斯年少成名,被誉为数学界的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数,设数列满足,则 .
德国大数学家高斯年少成名,被誉为数学王子.19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》,在其年幼时,对的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也被称为高斯算法.现有函数,则(1)(2)等于
A.B.C.D.
设函数,,
.则数列的前项和 .
已知函数为奇函数,且,若,则数列的前2022项和为 .
错位相减法求和
【要点讲解】(1)如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,常采用错位相减法.
(2)错位相减法求和时,应注意:
①在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“Sn-qSn”的表达式.
②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式Sn=na1.
已知数列,的前项和分别为,,且满足,,.
(1)求数列的通项公式;
(2)若,求的取值范围.
记数列的前项和为,已知,.
(1)求的通项公式;
(2)若对任意,,求的最小整数值.
已知数列满足,数列满足,.
(1)求数列和的通项公式;
(2)设,求数列的前项和.
已知数列为递增的等差数列,为的前项和,,,.
(1)若数列为等差数列,求非零常数的值;
(2)在(1)的条件下,,求的前项和.
裂项相消法求和
【要点讲解】利用裂项相消法求和的注意事项
(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.
(2)将通项裂项后,一定要注意调整前面的系数,避免失误.
(3)掌握常见的裂项相消的公式.
已知数列的前项的和为,数列是公差为1的等差数列.
(Ⅰ)证明:数列是公差为2的等差数列;
(Ⅱ)设数列的前项的和为,若.证明.
在等比数列中,,且,,成等差数列.
(1)求数列的通项公式;
(2)记,数列的前项和为,求不等式的解集.
在公差不为0的等差数列中,,且,,成等比数列.
(1)求的通项公式和前项和;
(2)设,求数列的前项和公式.
数列中,,.
(1)求数列的通项公式;
(2)设,数列的前项和为,证明.
“奇偶项”求和
【要点讲解】数列“奇偶项”的求和常常采用的策略:“奇偶分组”分别求和、“奇偶并项”求和.
已知等差数列满足,.
(1)求的通项公式;
(2)设,求数列的前项和.
已知为等差数列,,记,分别为数列,的前项和,,.
(1)求的通项公式;
(2)求数列的前项和.
已知数列的首项,且满足.
(1)证明:为等比数列;
(2)已知为的前项和,求.
已知为等差数列,,记,为,的前项和,,.
(1)求的通项公式;
(2)证明:当时,.
与两数列“相同项”有关的求和
【要点讲解】与两个数列“相同项”有关的问题的解题关键:确定好两个数列的“相同项”,再进行下一步研究,一类是去掉“相同项”后,构成新数列;一类是由“相同项”构成的新数列.
已知正项数列和,为数列的前项和,且满足,.
(1)分别求数列和的通项公式;
(2)将数列中与数列相同的项剔除后,按从小到大的顺序构成数列,记数列的前项和为,求.
已知正项等差数列和正项等比数列,为数列的前项和,且满足,,,.
(1)分别求数列和的通项公式;
(2)将数列中与数列相同的项剔除后,按从小到大的顺序构成数列,记数列的前项和为,求.
记等差数列的前项和为,公差为,等比数列的公比为,已知,,.
(1)求,的通项公式;
(2)将,中相同的项剔除后,两个数列中余下的项按从小到大的顺序排列,构成数列,求的前100项和.
课后练习
一.选择题(共6小题)
1.已知正项等比数列的前项和为,且满足,设,将数列中的整数项组成新的数列,则
A.2022B.2023C.4046D.4048
2.已知数列的前项和为,且满足,则
A.130B.169C.200D.230
3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.用他名字定义的函数称为高斯函数,其中表示不超过的最大整数.已知正项数列的前项和为,且,令,则
A.7B.8C.17D.18
4.已知数列满足,数列的前项和为,若的最大值仅为,则实数的取值范围是
A.B.C.D.
5.如图所示的数阵称为杨辉三角.斜线上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,,记这个数列的前项和为,则等于
A.128B.144C.155D.164
6.已知数列的每一项均为0或1,其前项和为,数列的前项和为,则下列结论中正确的是
A.数列,,,,的所有可能情况共有种
B.若为定值,则恒为0
C.若为定值,则为常数列
D.数列可能为等比数列
二.多选题(共2小题)
7.设等差数列的前项和为,且,,记为数列的前项和,若恒成立,则的值可以是
A.1B.2C.3D.4
8.已知集合,,,,集合,将集合中所有元素从小到大依次排列为一个数列,为数列的前项和,则
A.
B.或2
C.
D.若存在使,则的最小值为26
三.填空题(共4小题)
9.已知数列满足,若,则数列的前项和 .
10.对于数列,令,给出下列四个结论:
①若,则;
②若,则;
③存在各项均为整数的数列,使得对任意的都成立;
④若对任意的,都有,则有.
其中所有正确结论的序号是 .
11.已知,,将数列与数列的公共项从小到大排列得到新数列,则 .
12.已知数列的前项和为且,,成等差数列,,数列的前项和为,则满足的最小正整数的值为 .
四.解答题(共4小题)
13.已知等差数列的前项和为,,且,,成等比数列.
(1)求数列的通项公式;
(2)当数列的公差不为0时,记数列的前项和为,求证:.
14.设数列的前项之积为,满足.
(1)设,求数列的通项公式;
(2)设数列的前项之和为,证明:.
15.已知各项均为正数的数列的前项和为,,且.
(1)求数列的通项公式;
(2)设,且数列的前项和为,求的取值范围.
16.数列的满足,,.
(1)求数列的通项公式;
(2)将数列中去掉数列的项后余下的项按原来的顺序组成数列,求数列的前50项和.
相关试卷
这是一份高考数学一轮复习:4三角函数-专题6练习(题型归纳与重难专题突破提升),文件包含专题06函数y=Asinωx+φ原卷版docx、专题06函数y=Asinωx+φ解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份高考数学一轮复习:4三角函数-专题5练习(题型归纳与重难专题突破提升),文件包含专题05三角函数的图象与性质原卷版docx、专题05三角函数的图象与性质解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份高考数学一轮复习:3导数及其应用-重难点突破6练习(题型归纳与重难专题突破提升),文件包含重难点突破06恒成立与能成立问题原卷版docx、重难点突破06恒成立与能成立问题解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。