所属成套资源:高考数学二轮复习题海集训 (30题含答案)
高考数学二轮复习题海集训33 抛物线(30题含答案)
展开
这是一份高考数学二轮复习题海集训33 抛物线(30题含答案),共8页。试卷主要包含了设P,Q,,所以抛物线的焦点坐标为.,8;等内容,欢迎下载使用。
2020高考数学(理数)题海集训33 抛物线一 、选择题1.若抛物线x2=4y上的点P(m,n)到其焦点的距离为5,则n=( )A. B. C.3 D.4 2.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=|MN|,则点F到MN的距离为( )A. B.1 C. D.2 3.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是( )A.y2=±2x B.y2=±2x C.y2=±4x D.y2=±4x 4.已知抛物线y2=2x上一点A到焦点F的距离与其到对称轴的距离之比为5∶4,且|AF|>2,则点A到原点的距离为( )A. B.2 C.4 D.8 5.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x 6.抛物线y=2x2的准线方程是( )A.x= B.x=- C.y= D.y=- 7.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为4,则该抛物线方程是( )A.y2=x B.y2=x C.y2=2x D.y2=x 8.已知点A(-2,3)在抛物线C:y2=2px(p>0)的准线上,记C的焦点为F,则直线AF的斜率为( )A.- B.-1 C.- D.- 9.已知抛物线C:x2=2py(p>0),若直线y=2x被抛物线所截弦长为4,则抛物线C的方程为( )A.x2=8y B.x2=4y C.x2=2y D.x2=y 10.抛物线有如下光学性质:由焦点发出的光线,经抛物线上的一点反射后,反射光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线上的一点反射后,必经过抛物线的焦点.已知抛物线y2=4x的焦点为F,一平行于x轴的光线从点M(3,1)射入,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则直线AB的斜率为( )A. B.- C.± D.- 11.抛物线x2=4y的焦点为F,过点F作斜率为的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则△AHF的面积是( )A.4 B.3 C.4 D.8 12.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|等于( )A.3.5 B.2.5 C.3 D.2 13.过抛物线C:y2=2px(p>0)的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MN⊥l,若|NF|=4,则M到直线NF的距离为( )A. B.2 C.3 D.2 14.已知抛物线C:y2=2px(p>0)的焦点为F,点M在抛物线C上,且|MO|=|MF|=(O为坐标原点),则·=( )A.- B. C. D.- 15.已知抛物线y2=2px(p>0)过点A,其准线与x轴交于点B,直线AB与抛物线的另一个交点为M,若=λ,则实数λ为( )A. B. C.2 D.3 16.已知抛物线y2=2px(p>0)过点A,其准线与x轴交于点B,直线AB与抛物线的另一个交点为M,若=λ,则实数λ为( )A. B. C.2 D.3 17.抛物线C:y2=4x的焦点为F,N为准线l上一点,M为y轴上一点,∠MNF为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为( )A. B. C. D.3 18.已知直线l:x-y-a=0与抛物线x2=4y交于P,Q两点,过P,Q分别作l的垂线与y轴交于M,N两点,若|MN|=,则a=( )A.-1 B.1 C.-2 D.2 19.过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l与抛物线在第一、四象限分别交于A、B两点,则的值等于( )A.5 B.4 C.3 D.2 20.已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=4,则直线AF的倾斜角等于( )A. B. C. D. 二 、填空题21.已知抛物线y2=2px(p>0)的焦点F与双曲线-y2=1的右焦点重合,若A为抛物线在第一象限上的一点,且|AF|=3,则直线AF的斜率为________. 22.抛物线y2=x的焦点坐标是________. 23.已知直线l过点(1,0)且垂直于x轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________. 24.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为 . 25.在直角坐标系xOy中,有一定点M(-1,2),若线段OM的垂直平分线过抛物线x2=2py(p>0)的焦点,则该抛物线的准线方程是________. 26.若抛物线y2=4x上有一条长度为10的动弦AB,则AB的中点到y轴的最短距离为________. 27.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________. 28.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于 . 29.已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=-4(其中O为坐标原点),则△ABO面积的最小值是________. 30.过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B两点,若|AF|=2|BF|=6,则p=________.
答案解析1.答案为:D;解析:抛物线x2=4y的准线方程为y=-1,根据抛物线的定义可知,5=n+1,得n=4,故选D. 2.答案为:B;由题可知|MF|=2,设点N到准线的距离为d,由抛物线的定义可得d=|NF|,因为|NF|=|MN|,所以cos∠NMF===,所以sin∠NMF==,所以点F到MN的距离为|MF|sin∠NMF=2×=1,故选B. 3.答案为:D;解析:由题意知双曲线的焦点为(-,0),(,0).设抛物线C的方程为y2=±2px(p>0),则=,所以p=2,所以抛物线C的方程为y2=±4x.故选D. 4.答案为:B.解析:令点A到点F的距离为5a,点A到x轴的距离为4a,则点A的坐标为,代入y2=2x中,解得a=或a=(舍),此时A(2,2),故点A到原点的距离为2. 5.答案为:C.解析:由已知得抛物线的焦点F,设点A(0,2),抛物线上点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,因而y0=4,M.由|MF|=5得,=5,又p>0,解得p=2或p=8,即抛物线方程为y2=4x或y2=16x. 6.答案为:D;解析:抛物线y=2x2的标准方程为x2=y,其准线方程为y=-. 7.答案为:A.解析:根据抛物线的对称性,AB⊥x轴,由于正三角形的面积是4,故AB2=4,故AB=4,正三角形的高为2,故可以设点A的坐标为(2,2)代入抛物线方程得4=4p,解得p=,故所求的抛物线方程为y2=x.故选A. 8.答案为:C.解析:由已知,得准线方程为x=-2,所以F的坐标为(2,0).又A(-2,3),所以直线AF的斜率为k==-. 9.答案为:C.解析:由得或即两交点坐标为(0,0)和(4p,8p),则=4,得p=1(舍去负值),故抛物线C的方程为x2=2y. 10.答案为:B;解析:将y=1代入y2=4x可得x=,即A.由题可知,直线AB经过焦点F(1,0),所以直线AB的斜率k==-,故选B. 11.答案为:C;由抛物线的定义可得|AF|=|AH|,∵直线AF的斜率为,∴直线AF的倾斜角为30°,∵AH垂直于准线,∴∠FAH= 60°,故△AHF为等边三角形.设A,m>0,由|AF|=|AH|,得-1=·,解得m=2,故等边△AHF的边长|AH|=4,∴△AHF的面积是×4×4sin 60°=4.故选C. 12.答案为:C.解析:因为=4,所以||=4||,所以=.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,所以==,所以|QQ′|=3,根据抛物线定义可知|QQ′|=|QF|=3. 13.答案为:B;∵直线MF的斜率为,MN⊥l,∴∠NMF=60°,又|MF|=|MN|,且|NF|=4,∴△NMF是边长为4的等边三角形,∴M到直线NF的距离为2.故选B. 14.答案为:A;不妨设M(m,)(m>0),易知抛物线C的焦点F的坐标为,因为|MO|=|MF|=,所以解得m=,p=2,所以=,=,所以·=-2=-.故选A. 15.答案为:C;把点A代入抛物线的方程得2=2p×,解得p=2,所以抛物线的方程为y2=4x,则B(-1,0),设M,则=,=,由=λ,得解得λ=2或λ=1(舍去),故选C. 16.答案为:C.解析:把点A代入抛物线的方程得2=2p×,解得p=2,所以抛物线的方程为y2=4x,则B(-1,0),设M,则=,=(-1-,-yM),由=λ,得解得λ=2或λ=1(舍去),故选C. 17.答案为:C;如图所示,不妨设点N在第二象限,连接EN,易知F(1,0),因为∠MNF为直角,点E为线段MF的中点,所以|EM|=|EF|=|EN|,又E在抛物线C上,所以EN⊥l,E,所以N(-1,),M(0,2),所以|NF|=,|NM|=,所以△MNF的面积为,故选C. 18.答案为:D;∵直线l的方程为x-y-a=0,∴直线l的倾斜角为60°,∵直线l与抛物线x2=4y交于P,Q两点,过P,Q分别作l的垂线与y轴交于M,N两点,且|MN|=,∴|PQ|=sin 60°=8.设P(x1,y1),Q(x2,y2),联立方程,得得x2-4x+4a=0,由Δ>0得a<3,∴x1+x2=4,x1x2=4a,∴|PQ|=·=8,即48-16a=16,∴a=2,故选D. 19.C. 20.答案为:B;解析:由抛物线y2=4x知焦点F的坐标为(1,0),准线l的方程为x=-1,由抛物线定义可知|PA|=|PF|=4,所以点P的坐标为(3,2),因此点A的坐标为(-1,2),所以kAF==-,所以直线AF的倾斜角等于,故选B. 一 、填空题21.答案为:-2;解析:∵双曲线-y2=1的右焦点为(2,0),∴抛物线方程为y2=8x,∵|AF|=3,∴xA+2=3,得xA=1,代入抛物线方程可得yA=±2.∵点A在第一象限,∴A(1,2),∴直线AF的斜率为=-2. 22.答案为:;解析:由于抛物线y2=2px的焦点坐标为,因此抛物线y2=x的焦点坐标为. 23.答案为:(1,0);解析:由题知直线l的方程为x=1,则直线与抛物线的交点为(1,±2)(a>0).又直线被抛物线截得的线段长为4,所以4=4,即a=1.所以抛物线的焦点坐标为(1,0). 24.答案为:1.5; 25.答案为:y=-1.25;解析:依题意可得线段OM的垂直平分线的方程为2x-4y+5=0,把焦点坐标代入可求得p=,所以准线方程为y=-. 26.答案为:4;解析:设抛物线的焦点为F,准线为l:x=-1,弦AB的中点为M,则点M到准线l的距离d=≥,所以点M到准线l的距离的最小值为5,所以点M到y轴的最短距离为5-1=4. 27.答案为:;解析:如图,易知抛物线的焦点为F(1,0),准线方程是x=-1,由抛物线的定义知,点P到直线x=-1的距离等于点P到F的距离.于是问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,连接AF交抛物线于点P,此时最小值为|AF|==. 28.答案为:0.8;29.答案为:4;解析:不妨设A(x1,y1),B(x2,y2),y1>0,由·=-4,即x1x2+y1y2=-4得yy+y1y2=-4,得y1y2=-8.所以S△ABO=|x1y2-x2y1|=|y1-y2|≥4,当y1=2,y2=-2时取等号,故△ABO面积的最小值为4. 30.答案为:4;解析:法一:设直线AB的倾斜角为α,分别过A,B作准线l的垂线AA′,BB′,垂足分别为A′,B′,则|AA′|=6,|BB′|=3,过点B作AA′的垂线BC,垂足为C,则|AC|=3,|BC|=6,∠BAC=α,所以sin α==,所以|AB|==9,解得p=4.法二:设直线AB的倾斜角为α,不妨设A在x轴上方,B在x轴下方,则|AF|=,|BF|=,则有=2×,解得cos α=,又|AF|==6,所以p=4.
相关试卷
这是一份高考数学二轮复习题海集训34 导数的计算(30题含答案),共6页。
这是一份高考数学二轮复习题海集训32 双曲线(30题含答案),共10页。试卷主要包含了故选C,由左焦点F,等内容,欢迎下载使用。
这是一份高考数学二轮复习题海集训31 椭圆(30题含答案),共9页。