所属成套资源:2023年中考数学三轮冲刺考前查漏补缺(基础版)(含答案)
2023年中考数学三轮冲刺考前查漏补缺《函数的实际问题》(基础版)(含答案)
展开
这是一份2023年中考数学三轮冲刺考前查漏补缺《函数的实际问题》(基础版)(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学三轮冲刺考前查漏补缺《函数的实际问题》(基础版) 一 、选择题1.有甲、乙两个大小不同的水桶,容量分别为x、y公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x、y的关系式是( )A.y=20-x B.y=x+10 C.y=x+20 D.y=x+302.某公司市场营销部的个人收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售时(最低工资)的收入是( ).A.3 100元 B.3 000元 C.2 900元 D.2 800元3.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )
A.2小时 B.2.2小时 C.2.25小时 D.2.4小时4.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(单位:天),平均每天工作的时间为t(单位:小时),那么能正确表示d与t之间的函数关系的图象是( )5.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=﹣x2+5x B.y=﹣x2+10x C.y=x2+5x D.y=x2+10x7.已知矩形的周长为36 m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为x m,圆柱的侧面积为y m2,则y与x的函数关系式为( )A.y=﹣2πx2+18πx B.y=2πx2﹣18πxC.y=﹣2πx2+36πx D.y=2πx2﹣36πx8.某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3 m,此时距喷水管的水平距离为 m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )A.y=-3(x- )2+3 B.y=-3(x+ )2+3 C.y=-12(x- )2+3 D.y=-12(x+ )2+39.心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为( )A.y=﹣(x﹣13)2+59.9 B.y=﹣0.1x2+2.6x+31 C.y=0.1x2﹣2.6x+76.8 D.y=﹣0.1x2+2.6x+4310.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4 cm,最低点C在x轴上,高CH=1 cm,BD=2 cm,则右轮廓DFE所在抛物线的解析式为( ) A.y=(x+3)2 B.y=(x-3)2 C.y=-(x+3)2 D.y=-(x-3)211.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图像如图所示,请你根据图像判断,下列说法正确的是( ).A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快12.如图是抛物线形拱桥,已知水位在AB位置时,水面宽为4m,水位上升3 m,就达到警戒线CD,这时水面CD宽4 m.若洪水到来时水位以每小时0.25 m的速度上升,那么水过警戒线后 小时淹到拱桥顶.( ) A.6 B.12 C.18 D.24二 、填空题13.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式 .14.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.15.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例(y=,k≠0),已知200度近视眼镜的镜片焦距为0.5 m,则y与x之间的函数关系式是____________.16.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图像如图所示,则y与x的函数关系式为_______. 17.如图所示,正方形EFGH的顶点在边长为2的正方形ABCD的边上.若设AE=x,正方形EFGH的面积为y,则y关于x的函数表达式为 .18.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.三 、解答题19.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:x(元)180260280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出60元,当房价为多少元时,宾馆获得7200元的利润?(宾馆当利润=当日房费收入﹣当日支出) 20.为增强公民的节约意识,合理利用天然气资源,某市自2013年1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75 m3的部分2.5超出75 m3不超出125 m3的部分a超出125 m3的部分a+0.25(1)若甲用户3月份的用气量为60 m3,则应缴费________元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2,3月份共用天然气175 m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2,3月份的用气量各是多少? 21.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)如果一个用电器的电阻为5 Ω,其允许通过的最大电流是1 A,那么这个用电器接在这个闭合电路中,会不会烧毁?说明理由;(3)若允许的电流不超过4 A时,那么电阻R的取值应该控制在什么范围?22.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售量y(单位:个)之间有如下关系:日销售单价x/元3456日销售量y/个20151210(1)根据表中数据试确定y与x之间的函数关系式,并画出图象;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润? 23.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 24.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
参考答案1.D2.B3.C4.C5.D6.A7.C8.C9.D10.B11.C 12.B13.答案为:y=x-6.14.答案为:y=100x-40;15.答案为:y=.16.答案为:y=.17.答案为:y=2x2﹣4x+4.18.答案为:22.19.解:,解得:k=﹣,b=190.所以,y与x之间的函数表达式为y=﹣x+190(180≤x≤300).(2)根据题意,得(x﹣100)(﹣x+190)﹣[100﹣(﹣x+190)]×60=7200.整理,得x2﹣420x+41600=0.解得x1=260,x2=160(舍去).答:当房价为260元时,宾馆获得7200元的利润. 20.解:(1)由题意,得60×2.5=150(元);(2)由题意,得a=(325-75×2.5)÷(125-75),a=2.75,∴a+0.25=3.设OA的解析式为y1=k1x,则有2.5×75=75k1,∴k1=2.5,∴线段OA的解析式为y1=2.5x(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得解得:∴线段AB的解析式为:y2=2.75x-18.75(75<x≤125);(385-325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得解得:∴射线BC的解析式为y3=3x-50(x>125).(3)设乙用户2月份用气x m3,则3月份用气(175-x)m3,当x>125,175-x≤75时,3x-50+2.5(175-x)=455,解得:x=135,175-135=40,符合题意;当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,解得:x=145,不符合题意,舍去;当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.∴乙用户2,3月份的用气量各是135 m3,40 m3.21.解:(1)设I=,由图中曲线过(3,2)点,所以2=,解得 k=6,即函数关系式为 I=;(2)从上一问可知,用电器最大能加的电压是6 V,即其允许通过的最大电流是I==1.2 A>1 A,所以该用电器接在这个电路中,会被烧毁;(3)由I=可知I=4时,R=1.5 Ω,所以电阻应至少1.5 Ω.22.解:(1)y与x之间的函数关系式为y=,图略. (2)W=(x-2)·y=(x-2)·=60-,当x=10时,W有最大值.23.解:(1)由题意,可设y=kx+b(k≠0),把(5,30000),(6,20000)代入得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W元,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.24.解:(1)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣12000,∴y与x的关系式为:y=﹣2x2+340x﹣12000. (2)y=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450∴当x=85时,y的值最大.(3)当y=2250时,可得方程﹣2(x﹣85)2+2450=2250解这个方程,得x1=75,x2=95根据题意,x2=95不合题意应舍去∴当销售单价为75元时,可获得销售利润2250元.
相关试卷
这是一份2023年中考数学三轮冲刺考前查漏补缺《函数的图象》(提高版)(含答案),共12页。试卷主要包含了选择题,第四象限,A,解答题等内容,欢迎下载使用。
这是一份2023年中考数学三轮冲刺考前查漏补缺《方程实际问题》(提高版)(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学三轮冲刺考前查漏补缺《整式》(基础版)(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。