![高一数学苏教版必修一第二章2.6《函数模型及其应用》教案01](http://m.enxinlong.com/img-preview/3/3/12485404/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年3.4.2 函数模型及其应用教学设计
展开《函数模型及其应用》教案
一.课标要求:
1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;
2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二.命题走向
函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。
预测2009年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。
(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;
(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。
三.要点精讲
1.解决实际问题的解题过程
(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;
(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;
(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.
这些步骤用框图表示:
实际问题
函数模型
实际问题的解
函数模型的解
抽象概括
还原说明
2.解决函数应用问题应着重培养下面一些能力:
(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;
(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;
(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。
高中数学苏教版必修13.4.2 函数模型及其应用教案: 这是一份高中数学苏教版必修13.4.2 函数模型及其应用教案,共11页。
苏教版必修13.4.2 函数模型及其应用教案设计: 这是一份苏教版必修13.4.2 函数模型及其应用教案设计,共3页。教案主要包含了情境创设,学生活动,例题解析,小结,作业等内容,欢迎下载使用。
高中数学苏教版必修13.4.2 函数模型及其应用教案: 这是一份高中数学苏教版必修13.4.2 函数模型及其应用教案,共3页。教案主要包含了情境问题,学生活动,数学建构,数学应用,巩固练习,要点归纳与方法小结,作业等内容,欢迎下载使用。