终身会员
搜索
    上传资料 赚现金
    2020-2021学年高中数学人教A版(2019)必修第一册 5.3 第1课时 诱导公式二、三、四 学案2
    立即下载
    加入资料篮
    2020-2021学年高中数学人教A版(2019)必修第一册 5.3  第1课时 诱导公式二、三、四 学案201
    2020-2021学年高中数学人教A版(2019)必修第一册 5.3  第1课时 诱导公式二、三、四 学案202
    2020-2021学年高中数学人教A版(2019)必修第一册 5.3  第1课时 诱导公式二、三、四 学案203
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册5.3 诱导公式第1课时导学案及答案

    展开
    这是一份高中数学人教A版 (2019)必修 第一册5.3 诱导公式第1课时导学案及答案,共9页。

    1课时 诱导公式二、三、四

    (教师独具内容)

    课程标准:1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.

    教学重点:诱导公式的推导过程及其应用.

    教学难点:诱导公式的推导过程.

    【知识导学】

    知识点一  角的对称

    (1)πα的终边与角α的终边关于原点对称,如图a

    (2)角-α的终边与角α的终边关于x对称,如图b

    (3)πα的终边与角α的终边关于y对称,如图c.

    知识点二  诱导公式

    【新知拓展】

    (1)在公式一~四中,角α是任意角.

    (2)公式一、二、三、四都叫做诱导公式,它们可概括如下:

    记忆方法:2kπα(kZ),-απ±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,可以简单地说成函数名不变,符号看象限”.

    解释:函数名不变是指等式两边的三角函数同名;符号是指等号右边是正号还是负号;看象限是指假设α是锐角,要看原三角函数是取正值还是负值,如sin(πα),若把α看成锐角,则πα在第三象限,正弦在第三象限取负值,故sin(πα)=-sinα.

    (3)利用诱导公式一和三,还可以得出如下公式:

    sin(2πα)=-sinα

    cos(2πα)cosα

    tan(2πα)=-tanα.

    1判一判(正确的打,错误的打“×”)

    (1)利用诱导公式二可以把第三象限角的三角函数化为第一象限角的三角函数.(  )

    (2)利用诱导公式三可以把负角的三角函数化为正角的三角函数.(  )

    (3)利用诱导公式四可以把第二象限角的三角函数化为第一象限角的三角函数.(  )

    (4)诱导公式二~四两边的函数名称一致.(  )

    (5)诱导公式中的角α只能是锐角.(  )

    答案 (1) (2) (3) (4) (5)×

    2做一做

    (1)已知tanα4,则tan(πα)等于(  )

    Aπ4    B4 

    C.-4    D4π

    (2)sin的值是(  )

    A.-    B.-2 

    C2  D.

    (3)cos(3πα)cos(2πα)________.

    答案 (1)C (2)A (3)0

     

    题型一  给角求值问题

    1 求下列三角函数值:

    (1)sin(1200°)(2)tan945°(3)cos.

    [] (1)sin(1200°)=-sin1200°

    =-sin(3×360°120°)=-sin120°

    =-sin(180°60°)

    =-sin60°=-.

    (2)tan945°tan(2×360°225°)

    tan225°tan(180°45°)

    tan45°1.

    (3)coscos

    coscos.

     

    金版点睛

    利用诱导公式解决给角求值问题的步骤

     

     

     求下列各式的值:

    (1)sin(1320°)cos1110°cos(1020°)sin750°tan495°

    (2)sincostan.

     (1)原式=sin(120°4×360°)cos(30°3×360°)cos(60°3×360°)sin(30°2×360°)tan(135°360°)sin120°cos30°cos60°sin30°tan135°××10.

    (2)原式=sincostan

    sincostan

    sin·tan

    ×1.

    题型二  给值求值问题

    2 (1)已知cos(πα)=-,且α是第一象限角,则sin(α)的值是(  )

    A.    B.- 

    C±  D.

    (2)已知cos,则cos________.

    [解析] (1)因为cos(πα)=-cosα

    所以cosα.

    因为α是第一象限角,所以sinα>0.

    所以sinα.

    所以sin(α)sin(α)=-sinα=-.

    (2)coscos

    =-cos=-.

    [答案] (1)B (2)

    [结论探究] (1)若本例(2)中的条件不变,求cos

    (2)若本例(2)条件不变,求cossin2的值.

    解 (1)coscoscoscos.

    (2)因为coscos

    =-cos=-

    sin2sin2sin2

    1cos212

    所以cossin2=-

    =-.

     

    金版点睛

    解决条件求值问题的策略

    (1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.

    (2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.

     (1)已知sinβcos(αβ)=-1,则sin(α2β)的值为(  )

    A1    B.-1

    C.    D.-

    (2)已知cos(α55°)=-,且α为第四象限角,则sin(α125°)的值为________

    (3)已知tan(πα)3,求的值.

    答案 (1)D (2) (3)见解析

    解析 (1)cos(αβ)=-1αβπ2kπkZ

    sin(α2β)sin[(αβ)β]sin(πβ)=-sinβ=-.

    (2)cos(α55°)=-<0,且α是第四象限角.

    α55°是第三象限角.

    sin(α55°)=-=-.

    α125°180°(α55°)

    sin(α125°)sin[180°(α55°)]

    =-sin(α55°).

    (3)因为tan(πα)3,所以tanα3.

    7.

    题型三   三角函数式的化简

    3 化简下列各式:

    (1)

    (2)

    (3)sincos(kZ)

    [] (1)原式=

    =-=-tanα.

    (2)原式=

    =-1.

    (3)k为偶数时,

    原式=sincossincos

    =-sincos=-.

    k为奇数时,原式=sincos

    sincos

    sincos.

     

    金版点睛

    三角函数式化简的常用方法

    (1)依据所给式子合理选用诱导公式将所给角的三角函数转化为另一个角的三角函数.

    (2)切化弦:一般需将表达式中的切函数转化为弦函数.

    (3)注意1的应用:1sin2αcos2αtan.

    (4)用诱导公式进行化简时,若遇到kπ±α的形式,需对k进行分类讨论,然后再运用诱导公式进行化简.

     化简:(1)

    (2).

    解 (1)

    1.

    (2)原式=

    =-1.

     

                        

    1.若n为整数,则化简所得的结果是(  )

    Atan    B.-tan

    Ctanα    D.-tanα

    答案 C

    解析 原式=tan(nπα),无论n是奇数还是偶数,tan(nπα)都等于tanα.

    2.已知tan,则tan(  )

    A.    B.-

    C.    D.-

    答案 B

    解析 因为tantan=-tan,所以tan=-.

    3.的值等于________

    答案 2

    解析 原式=

    2.

    4.已知sin(45°α),则sin(225°α)________.

    答案 

    解析 sin(225°α)sin[(45°α)180°]

    =-sin(45°α)=-.

    5.化简:(nZ)

    解 n2kkZ时,

    原式=.

    n2k1kZ时,

    原式=

    =-.

    所以原式=

                     

     

    相关学案

    高中数学人教A版 (2019)必修 第一册5.3 诱导公式优质学案: 这是一份高中数学人教A版 (2019)必修 第一册5.3 诱导公式优质学案,文件包含同步学案高中数学人教版2019必修第一册--课时53考点诱导公式原卷版docx、同步学案高中数学人教版2019必修第一册--课时53考点诱导公式解析版docx等2份学案配套教学资源,其中学案共13页, 欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册5.3 诱导公式第2课时导学案: 这是一份高中数学人教A版 (2019)必修 第一册5.3 诱导公式第2课时导学案,共7页。学案主要包含了变更论证的方法.常用定义法等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册5.3 诱导公式第1课时学案: 这是一份高中数学人教A版 (2019)必修 第一册5.3 诱导公式第1课时学案,共6页。学案主要包含了素养目标,学法解读,对点练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map