初中数学苏科版九年级上册2.5 直线与圆的位置关系同步测试题
展开这是一份初中数学苏科版九年级上册2.5 直线与圆的位置关系同步测试题,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年苏科版九年级数学上册《2.5直线与圆的位置关系》同步能力提高训练(附答案)
一、选择题
1.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是( )
A.B.C.D.
2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是( )
A.相离 B.相切 C.相交 D.相离、相切、相交都有可能
3.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )
A.27° B.32° C.36° D.54°
4.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是( )
A.0 B.1 C.2 D.3
5.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为( )
A.(﹣4,0) B.(﹣2,0)
C.(﹣4,0)或(﹣2,0) D.(﹣3,0)
二、填空题
6.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是 .
7.已知在直角坐标平面内,以点P(1,2)为圆心,r为半径画圆,⊙P与坐标轴恰好有三个交点,那么r的取值是 .
8.如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.
9.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB= .
10.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C
旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为 .
11.如图,PA、PB切⊙O于点A、B,AC是⊙O的直径,且∠BAC=35°,则∠P= 度.
12.如图,AB,AC分别是⊙O的切线和割线,且∠C=45°,∠BDA=60°,CD=,则切线AB的长是 .
13.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为 .
15.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为 .
16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为 .
17.如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦相等,则∠BOC= .
三、解答题
18.如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.
(1)求证:四边形ODCE是正方形;
(2)如果AC=6,BC=8,求内切圆⊙O的半径.
19.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.
(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;
(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.
20.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.
21.如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.
22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+,BC=2,求⊙O的半径.
23.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
24.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=2,AO=,求OD的长度.
25.如图,在Rt△ABC中,已知∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边交于点D,连接CD,恰好AC=DC.
(1)求证:CD是⊙O的切线;
(2)若AC=3,BC=5,求⊙O的半径r.
26.如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.
(1)求△OPC的最大面积;
(2)求∠OCP的最大度数;
(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.
参考答案
1.解:∵⊙O的半径为5,圆心O到直线l的距离为3,
∵5>3,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选:B.
2.解:∵点P的坐标为(﹣2,3),
∴点P到x轴的距离是3,
∵2<3,
∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,
故选:A.
3.解:∵PA切⊙O于点A,
∴∠OAP=90°,
∵∠P=36°,
∴∠AOP=54°,
∴∠B=27°.
故选:A.
4.解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
∵G是BC的中点,
∴AG=DG,
∴GH垂直平分AD,
∴点O在HG上,
∵AD∥BC,
∴HG⊥BC,
∴BC与圆O相切;
∵OG=OD,
∴点O不是HG的中点,
∴圆心O不是AC与BD的交点;
∵∠ADF=∠DAE=90°,
∴∠AEF=90°,
∴四边形AEFD为⊙O的内接矩形,
∴AF与DE的交点是圆O的圆心;
∴(1)错误,(2)(3)正确.
故选:C.
5.解:连接AQ,AP.
根据切线的性质定理,得AQ⊥PQ;
要使PQ最小,只需AP最小,
则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;
此时P点的坐标是(﹣3,0).
故选:D.
6.解:连接OA、OB,如下图所示:
∵PA、PB为圆的两条切线,
∴由切线长定理可得:PA=PB,
同理可知:DA=DC,EC=EB;
∵OA⊥PA,OA=5,PO=13,
∴由勾股定理得:PA=12,
∴PA=PB=12;
∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;
∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,
故此题应该填24cm.
7.解:∵以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,
∴⊙P与x轴相切(如图1)或⊙P过原点(如图2),
当⊙P与x轴相切时,r=2;
当⊙P过原点时,r=OP=.
∴r=2或.
故答案为:2或;
8.解:连接OA,
∵四边形ABOC是菱形,
∴BA=BO,
∵AB与⊙O相切于点D,
∴OD⊥AB,
∵点D是AB的中点,
∴直线OD是线段AB的垂直平分线,
∴OA=OB,
∴△AOB是等边三角形,
∵AB与⊙O相切于点D,
∴OD⊥AB,
∴∠AOD=∠AOB=30°,
同理,∠AOE=30°,
∴∠DOE=∠AOD+∠AOE=60°,
故答案为:60.
9.解:连接OB,
∵BC是⊙O的切线,
∴OB⊥BC,
∴∠OBA+∠CBP=90°,
∵OC⊥OA,
∴∠A+∠APO=90°,
∵OA=OB,∠OAB=22°,
∴∠OAB=∠OBA=22°,
∴∠APO=∠CBP=68°,
∵∠APO=∠CPB,
∴∠CPB=∠APO=68°,
∴∠OCB=180°﹣68°﹣68°=44°,
故答案为:44°
10.解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,
则∠OEB′=∠OHB′=90°,
∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,
∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,
∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,
∴B′H=OE=2.5,
∴CH=B′C﹣B′H=1.5,
∴CG=B′E=OH===2,
∵四边形EB′CG是矩形,
∴∠OGC=90°,即OG⊥CD′,
∴CF=2CG=4,
故答案为:4.
11.解:连接OB;
∵PA、PB都是⊙O的切线,且切点为A、B,
∴∠OAP=∠OBP=90°,
∴∠AOB+∠P=180°;
在△AOB中,OA=OB,∠AOB=180°﹣2∠BAC;
∴∠P=2∠BAC=70°.
12.解:
过点A作AM⊥BD与点M.
∵AB为圆O的切线
∴∠ABD=∠C=45°(弦切角等于所夹弧所对的圆周角)
∵∠BDA=60°
∴∠BAD=75°,∠DAM=30°,∠BAM=45°
设AB=x,则AM=x,在直角△AMD中,AD=x
由切割线定理得:AB2=AD•AC
x2=x(x+)
解得:x1=6,x2=0(舍去)
故AB=6.
故答案是:6.
13.解:如图,连接EC.
∵E是△ADC的内心,∠ADC=90°,
∴∠ACE=∠ACD,∠EAC=∠CAD,
∴∠AEC=180°﹣(∠ACD+∠CAD)=135°,
在△AEC和△AEB中,
,
∴△EAC≌△EAB,
∴∠AEB=∠AEC=135°,
故答案为135°.
15.解:∵PA、PB是⊙O切线,
∴PA⊥OA,PB⊥OB,
∴∠PAO=∠PBO=90°,
∵∠P+∠PAO+∠AOB+∠PBO=360°,
∴∠P=180°﹣∠AOB,
∵∠ACB=65°,
∴∠AOB=2∠ACB=130°,
∴∠P=180°﹣130°=50°,
故答案为50°.
16.解:过点O作OE⊥AB于点E,OF⊥BC于点F.
∵AB、BC是⊙O的切线,
∴点E、F是切点,
∴OE、OF是⊙O的半径;
∴OE=OF;
在△ABC中,∠C=90°,AC=3,AB=5,
∴由勾股定理,得BC=4;
又∵D是BC边的中点,
∴S△ABD=S△ACD,
又∵S△ABD=S△ABO+S△BOD,
∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,
解得OE=,
∴⊙O的半径是.
故答案为:.
17.解:∵⊙O截△ABC的三边所得的弦相等,
∴O到△ABC三边的距离相等,
∴O在三角形的角的平分线上,即O是△ABC的内心.
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB),
又∵△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°.
∴∠OBC+∠OCB=55°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.
故答案是:125°.
18.解:(1)∵⊙O是△ABC的内切圆,
∴OD⊥BC,OE⊥AC,又∠C=90°,
∴四边形ODCE是矩形,
∵OD=OE,
∴四边形ODCE是正方形;
(2)∵∠C=90°,AC=6,BC=8,
∴AB==10,
由切线长定理得,AF=AE,BD=BF,CD=CE,
∴CD+CE=BC+AC﹣BD﹣AE=BC+AC﹣AB=4,
则CE=2,即⊙O的半径为2.
19.解:(1)直线OB与⊙M相切,
理由:设线段OB的中点为D,连接MD,如图1,
∵点M是线段AB的中点,所以MD∥AO,MD=4.
∴∠AOB=∠MDB=90°,
∴MD⊥OB,点D在⊙M上,
又∵点D在直线OB上,
∴直线OB与⊙M相切;
(2)解:连接ME,MF,如图2,
∵A(﹣8,0),B(0,6),
∴设直线AB的解析式是y=kx+b,
∴,
解得:k=,b=6,
即直线AB的函数关系式是y=x+6,
∵⊙M与x轴、y轴都相切,
∴点M到x轴、y轴的距离都相等,即ME=MF,
设M(a,﹣a)(﹣8<a<0),
把x=a,y=﹣a代入y=x+6,
得﹣a=a+6,得a=﹣,
∴点M的坐标为(﹣,).
20.解:连接OA,则OA⊥PA.
在直角三角形APO中,PO=13cm,OA=5cm,
根据勾股定理,得
AP=12cm.
∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,
∴PA=PB,DA=DF,EF=EB,
∴△PDE的周长=2PA=24cm.
21.解:连接OA,
设⊙O的半径为rcm,(2分)
则r2+82=(r+4)2,(4分)
解得r=6,
∴⊙O的半径为6cm.(2分)
22.(1)证明:连接OA.
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切线;
(2)解:过点C作CE⊥AB于点E.
在Rt△BCE中,∠B=60°,BC=2,
∴BE=BC=,CE=3,
∵AB=4+,
∴AE=AB﹣BE=4,
∴在Rt△ACE中,AC==5,
∴AP=AC=5.
∴在Rt△PAO中,OA=,
∴⊙O的半径为.
23.(1)证明:连接OE.
∵OE=OB,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠C,
∵∠ACB=90°,
∴∠OEA=90°
∴AC是⊙O的切线;
(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,
由题意可知四边形OECH为矩形,
∴OH=CE,
∵BF=6,
∴BH=3,
在Rt△BHO中,OB=5,
∴OH==4,
∴CE=4.
24.(1)证明:∵AC是⊙切线,
∴OA⊥AC,
∴∠OAC=90°,
∴∠OAB+∠CAB=90°.
∵OC⊥OB,
∴∠COB=90°,
∴∠ODB+∠B=90°.
∵OA=OB
∴∠OAB=∠B,
∴∠CAB=∠ODB.
∵∠ODB=∠ADC,
∴∠CAB=∠ADC
∴AC=CD;
(2)解:在Rt△OAC中,OC==3,
∴OD=OC﹣CD,
=OC﹣AC,
=3﹣2,
=1.
25.(1)证明:连接OD,如图所示:
∵AC=DC,OD=OB,
∴∠A=∠ADC,∠B=∠ODB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠ADC+∠ODB=90°,
∴∠ODC=90°,
即CD⊥OD,
∴CD是⊙O的切线;
(2)解:∵AC=3,BC=5,
∴CD=3,OB=OD=r,OC=5﹣r,
∵∠ODC=90°,
∴CD2+OD2=OC2,
即32+r2=(5﹣r)2,
解得:r=1.6;
即⊙O的半径r=1.6.
26.(1)解:∵AB=4,
∴OB=2,OC=OB+BC=4.
在△OPC中,设OC边上的高为h,
∵S△OPC=OC•h=2h,
∴当h最大时,S△OPC取得最大值.
观察图形,当OP⊥OC时,h最大,如答图1所示:
此时h=半径=2,S△OPC=2×2=4.
∴△OPC的最大面积为4.
(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:
∵==,
∴∠OCP=30°
∴∠OCP的最大度数为30°.
(3)证明:如答图3,连接AP,BP.
∴∠A=∠D=∠APD=∠ABD,
∵=,
∴=,
∴AP=BD,
∵CP=DB,
∴AP=CP,
∴∠A=∠C,
在△APB与△CPO中
,
∴△APB≌△CPO(SAS),
∴∠APB=∠OPC,
∵AB是直径,
∴∠APB=90°,
∴∠OPC=90°,
∴DP⊥PC,
∵DP经过圆心,
∴PC是⊙O的切线.
相关试卷
这是一份初中数学苏科版九年级上册第2章 对称图形——圆2.5 直线与圆的位置关系达标测试,共15页。
这是一份苏科版九年级上册2.5 直线与圆的位置关系当堂检测题,共28页。
这是一份初中数学苏科版九年级上册2.5 直线与圆的位置关系课堂检测,共21页。