初中数学人教版九年级上册24.2.2 直线和圆的位置关系导学案
展开24.2.2直线和圆的位置关系
知识点一:直线和圆的位置关系
(1)直线和圆的三种位置关系:
①相离:一条直线和圆没有公共点.
②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.
③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.
(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.
①直线l和⊙O相交⇔d<r
②直线l和⊙O相切⇔d=r
③直线l和⊙O相离⇔d>r.
例题:已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交 B.相切 C.相离 D.无法确定
变式1:半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是( )
A.相切 B.相交 C.相离 D.相切或相交
变式2:直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是( )
A.相离 B.相切 C.相交 D.相切或相交
知识点二:切线的判定定理
(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(2)在应用判定定理时注意:
①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.
②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.
③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.
例题:如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=( )
A.3 B.2 C.5 D.
变式1:如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于( )时,PA与⊙O相切.
A.20° B.25° C.30° D.40°
变式2:已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是( )
A.OP=5 B.OE=OF
C.O到直线EF的距离是4 D.OP⊥EF
知识点三:切线的性质定理
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
例题:如图,PA、PB分别切⊙O于A、B,点C和点D分别是线段PA、PB上的动点,并且CD始终保持与圆O相切,若PA=8cm,则△PCD的周长是( )
A.8 B.12 C.16 D.不能确定
变式1:如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于( )
A.27° B.32° C.36° D.54°
变式2:如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为( )
A.4 B.2 C.3 D.2.5
知识点四:切线长定理
(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.
(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
(4)切线长定理包含着一些隐含结论:
①垂直关系三处;
②全等关系三对;
③弧相等关系两对,在一些证明求解问题中经常用到.
例题:如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )
A.10 B.18 C.20 D.22
变式1:如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于( )
A.13 B.12 C.11 D.10
变式2:如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是 .
知识点五:三角形的内切圆
(1)内切圆的有关概念:
与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.
(3)三角形内心的性质:
三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
例题:如图,圆O是△ABC的内切圆,分别切BA、BC、AC于点E、F、D,点P在弧DE上,如果∠EPF=70°,那么∠B=( )
A.40° B.50° C.60° D.70°
变式1:下列说法中,正确的个数共有( )
(1)一个三角形只有一个外接圆;
(2)圆既是轴对称图形,又是中心对称图形;
(3)在同圆中,相等的圆心角所对的弧相等;
(4)三角形的内心到该三角形三个顶点距离相等;
A.1个 B.2个 C.3个 D.4个
变式2:在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,△ABC内切圆与外接圆面积之比为( )
A.2:5 B.3:4 C.4:25 D.9:61
拓展点一:直线和圆的位置关系的应用
例题:点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是( )
A.相交 B.相离 C.相切或相交 D.相切或相离
变式1:在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
变式2:⊙O半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.无法确定
拓展点二:切线判定的应用
例题:如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(3,0),将⊙P沿x轴左平移,使⊙P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1 或 5
变式1:如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.
求证:CD为⊙O的切线.
变式2:如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
拓展点三:切线性质的应用
例题:如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3 B. C.6 D.
变式1:如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为( )
A.10 B.8 C.4 D.4
变式2:如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为( )
A.30° B.35° C.40° D.45°
拓展点四:切线长定理的应用
例题:如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为( )
A.40° B.140° C.70° D.80°
变式1:如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是 .
变式2:如图,PA、PB切⊙O于点A、B,PA=6,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是 .
易错点一:混淆点与点的距离及点到直线的距离的概念
例题:已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是( )
A.外离 B.外切 C.相交 D.内切
变式1:已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是( )
A.相离 B.相切
C.相交 D.相离、相切、相交都有可能
变式2:已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
易错点二:混淆三角形的外心和内心的实质
(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.
外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
(2)内切圆:与三角形各边都相切的圆叫三角形的内切圆
内心:三角形的内切圆的圆心叫做三角形的内心,
例题:三角形的内心是三角形中( )
A.三条高的交点 B.三边垂直平分线的交点
C.三条中线的交点 D.三条角平分线的交点
变式1:正三角形外接圆的半径为2,那么它内切圆的半径为( )
A.1 B. C. D.2
变式2:如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:
①∠EDF=∠B;
②2∠EDF=∠A+∠C;
③2∠A=∠FED+∠EDF;
④∠AED+∠BFE+∠CDF=180°,其中成立的个数是( )
A.1个 B.2个 C.3个 D.4个
初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系学案设计: 这是一份初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系学案设计,共6页。学案主要包含了旧知回顾,新知梳理,试一试,拓展延伸等内容,欢迎下载使用。
人教版九年级上册24.2.2 直线和圆的位置关系学案及答案: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系学案及答案,共5页。学案主要包含了课时安排,新知探究,精练反馈,学习小结,拓展延伸等内容,欢迎下载使用。
人教版九年级上册24.2.2 直线和圆的位置关系导学案及答案: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系导学案及答案,文件包含九年级数学上册2422直线与圆位置关系讲义学生版docx、九年级数学上册2422直线与圆位置关系讲义教师版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。