- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十二章 推理与证明、算法、复数 12-5 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第四章 三角函数与解三角形 4-1 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十二章 推理与证明、算法、复数 12-4 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第四章 三角函数与解三角形 4-2 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-4 word版含答案 试卷 0 次下载
2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-1 word版含答案
展开www.ks5u.com 真题演练集训
1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18 C.12 D.9
答案:B
解析:由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18(种)走法,故选B.
2.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )
A.18个 B.16个
C.14个 D.12个
答案:C
解析:由题意可得,a1=0,a8=1,a2,a3,…,a7中有3个0、3个1,且满足对任意k≤8,都有a1,a2,…,ak中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.
3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48
C.60 D.72
答案:D
解析:由题意可知,个位可以从1,3,5中任选一个,有A种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A种方法,所以奇数的个数为AA=3×4×3×2×1=72,故选D.
4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )
A.144个 B.120个
C.96个 D.72个
答案:B
解析:当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数.故符合条件的偶数共有2A+CA=120(个).
课外拓展阅读
应用两个计数原理求解涂色问题
如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.
染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.
解法一:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.
当S,A,B染好时,不妨设其颜色分别为1,2,3.
若C染2,则D可染3或4或5,有3种染法;
若C染4,则D可染3或5,有2种染法;
若C染5,则D可染3或4,有2种染法.
可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有60×7=420(种).
解法二:以S,A,B,C,D顺序分步染色.
第一步,点S染色,有5种方法;
第二步,点A染色,与S在同一条棱上,有4种方法;
第三步,点B染色,与S,A分别在同一条棱上,有3种方法;
第四步,点C染色,也有3种方法,但考虑到点D与S,A,C相邻,需要针对A与C是否同色进行分类:当A与C同色时,点D有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以点C有2种染色方法,点D也有2种染色方法.
所以不同的染色方法共有5×4×3×(1×3+2×2)=420(种).
解法三:按所用颜色种数分类.
第一类,5种颜色全用,共有A种不同的方法;
第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A种不同的方法;
第三类,只用3种颜色,则A与C,B与D必定同色,共有A种不同的方法.
由分类加法计数原理,得不同的染色方法总数为
A+2×A+A=420(种).
420
方法点睛
两个计数原理综合应用的常见题型与求解策略
题型 | 求解策略 |
组数问题 | 一般按特殊位置(如末位和首位)由谁占领分类,分类中再按特殊位置(或特殊元素)优先的方法分步完成 |
涂色问题 | 一般有两种方案:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数 |
简单的 选择问题 | 根据具体情况先合理分类,每类中再分步完成,要关注特殊元素 |
2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案: 这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案,共3页。
2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案: 这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案,共4页。
2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-6 word版含答案: 这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-6 word版含答案,共3页。试卷主要包含了某公司的班车在7等内容,欢迎下载使用。