|学案下载
搜索
    上传资料 赚现金
    一元二次方程根的判别式及根与系数的关系—知识讲解(提高)卷_人教版数学九年级上册
    立即下载
    加入资料篮
    一元二次方程根的判别式及根与系数的关系—知识讲解(提高)卷_人教版数学九年级上册01
    一元二次方程根的判别式及根与系数的关系—知识讲解(提高)卷_人教版数学九年级上册02
    一元二次方程根的判别式及根与系数的关系—知识讲解(提高)卷_人教版数学九年级上册03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学21.2.4 一元二次方程的根与系数的关系学案

    展开
    这是一份初中数学21.2.4 一元二次方程的根与系数的关系学案,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。

    【学习目标】


    1. 会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;


    2. 掌握一元二次方程的根与系数的关系以及在各类问题中的运用.





    【要点梳理】


    要点一、一元二次方程根的判别式


    1.一元二次方程根的判别式


    一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即


    (1)当△>0时,一元二次方程有2个不相等的实数根;


    (2)当△=0时,一元二次方程有2个相等的实数根;


    (3)当△<0时,一元二次方程没有实数根.


    要点诠释:


    利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定的值;③计算的值;④根据的符号判定方程根的情况.


    2. 一元二次方程根的判别式的逆用


    在方程中,


    (1)方程有两个不相等的实数根﹥0;


    (2)方程有两个相等的实数根=0;


    (3)方程没有实数根﹤0.


    要点诠释:


    (1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;


    (2)若一元二次方程有两个实数根则 ≥0.


    要点二、一元二次方程的根与系数的关系


    1.一元二次方程的根与系数的关系


    如果一元二次方程的两个实数根是,


    那么,.


    注意它的使用条件为a≠0, Δ≥0.


    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.





    2.一元二次方程的根与系数的关系的应用


    (1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;


    (2)已知方程的一个根,求方程的另一根及未知系数;


    (3)不解方程,可以利用根与系数的关系求关于x1、x2的对称式的值.此时,常常涉及代数式的一些重要变形;如:


    ①;


    ②;


    ③;


    ④;


    ⑤;


    ⑥;


    ⑦;


    ⑧;


    ⑨;


    ⑩.





    (4)已知方程的两根,求作一个一元二次方程;


    以两个数为根的一元二次方程是.


    (5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;


    (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.


    设一元二次方程的两根为、,则


    ①当△≥0且时,两根同号.


    当△≥0且,时,两根同为正数;


    当△≥0且,时,两根同为负数.


    ②当△>0且时,两根异号.


    当△>0且,时,两根异号且正根的绝对值较大;


    当△>0且,时,两根异号且负根的绝对值较大.


    要点诠释:


    (1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;


    (2)若有理系数一元二次方程有一根,则必有一根(,为有理数).





    【典型例题】


    类型一、一元二次方程根的判别式的应用


    1(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.


    (1)若该方程有两个不相等的实数根,求实数a的取值范围;


    (2)当该方程的一个根为1时,求a的值及方程的另一根.


    【思路点拨】


    (1已知方程有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.


    (2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.


    【答案与解析】


    解:(1)∵b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,


    解得:a<3.


    ∴a的取值范围是a<3;


    (2)设方程的另一根为x1,由根与系数的关系得:





    解得:,


    则a的值是﹣1,该方程的另一根为﹣3.


    【总结升华】熟练掌握一元二次方程根的判别式与根之间的对应关系.


    举一反三:


    【变式】(2015•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )


    A. 1 B. 0,1 C. 1,2 D. 1,2,3





    【答案】A.


    提示:根据题意得:△=16﹣12k≥0,且k≠0,


    解得:k≤,且k≠0.


    则k的非负整数值为1.


    2.已知关于x的一元二次方程有实数根,则m的取值范围是________


    【答案】且m≠1


    【解析】因为方程有实数根,所以,解得,


    同时要特别注意一元二次方程的二次项系数不为0,即,


    ∴ m的取值范围是且m≠1.


    【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.


    举一反三:


    【变式】已知:关于x的方程有两个不相等的实数根,求k的取值范围.


    【答案】.





    类型二、一元二次方程的根与系数的关系的应用


    3. (2016•绥化)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.


    (1)求m的取值范围;


    (2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.


    【思路点拨】 (1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;


    (2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1•x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1•x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.


    【答案与解析】


    解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,


    ∴△=22﹣4×1×2m=4﹣8m>0,


    解得:m<.


    ∴m的取值范围为m<.


    (2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,


    ∴x1+x2=﹣2,x1•x2=2m,


    ∴x12+x22=﹣2x1•x2=4﹣4m=8,


    解得:m=﹣1.


    当m=﹣1时,△=4﹣8m=12>0.


    ∴m的值为﹣1.


    【总结升华】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.


    举一反三:【变式】不解方程,求方程的两个根的(1)平方和;(2)倒数和.


    【答案】(1); (2)3.





    4. 求作一个一元二次方程,使它的两根分别是方程各根的负倒数.


    【答案与解析】


    设方程的两根分别为x1、x2,由一元二次方程根与系数的关系,


    得,.


    设所求方程为,它的两根为y1、y2,


    由一元二次方程根与系数的关系得,,


    从而,





    故所求作的方程为,即.


    【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“和积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.


    相关学案

    初中数学人教版九年级上册21.1 一元二次方程学案: 这是一份初中数学人教版九年级上册21.1 一元二次方程学案,共16页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    初中数学人教版九年级上册21.1 一元二次方程学案: 这是一份初中数学人教版九年级上册21.1 一元二次方程学案,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。

    人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案设计: 这是一份人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案设计,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        一元二次方程根的判别式及根与系数的关系—知识讲解(提高)卷_人教版数学九年级上册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map