初中北师大版第五章 一元一次方程综合与测试优秀课后测评
展开1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示8,点C表示16,我们称点A和点C在数轴上相距22个长度单位.动点P从点A出发,以1单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速:同时,动点Q从点C出发,以2单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
2.如图,在数轴上每相邻两点之间的距离为一个单位长度.
(1)若点A,B,C,D对应的数分别是a,b,c,d,则可用含a的整式表示d为 ,若3d﹣2a=14,则b= c= (填具体数值)
(2)在(1)的条件下,点A以4个单位/秒的速度沿着数轴的正方向运动,同时点B以2个位/秒的速度沿着数轴的正方向运动,当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求相遇点所对应的数.
(3)如果点A以2个单位/秒的速度沿着数轴的负方向运动,同时点B以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A与点B到点C的距离相等,若存在请求出时间t,若不存在请说明理由.
3.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,则:
(1)动点P从点A运动至点C需要时间多少秒?
(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
4.如图1,已知数轴上有三点A、B、C,AB=BC,点C对应的数是200,且BC=300.
(1)求A对应的数;
(2)若动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,当点Q、R相遇时,点P、Q、R即停止运动,已知点P、Q、R的速度分别为每秒10个单位长度、5个单位长度、2个单位长度,M为线段PR的中点,N为线段RQ的中点,问多少秒时恰好满足MR=4RN?
(3)若点E、D对应的数分别为﹣800、0,动点K、L分别从E、D两点同时出发向左运动,点K、L的速度分别为每秒10个单位长度、5个单位长度,点G为线段KL的中点,问:点L在从点D运动到点A的过程中,LC﹣AG的值是否发生变化?若不变,求其值.若变化,请说明理由.
5.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.
(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB= ,AC= ,BE= ;
(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;
(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.
6.如图1,线段AB=60厘米.
(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿直线自B点向A点以6厘米/分的速度运动,几分钟后,P、Q两点相遇?
(2)几分钟后,P、Q两点相距20厘米?
(3)如图2,AO=PO=8厘米,∠POB=40°,现将点P绕着点O以20度/分的速度顺时针旋转一周后停止,同时点Q沿直线BA沿B点向A点运动,假若P、Q两点也能相遇,求点Q的速度.
7.如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).
(1)当点P在MO上运动时,PO= cm (用含t的代数式表示);
(2)当点P在MO上运动时,t为何值,能使OP=OQ?
(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.
8.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.
(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;
(2)当t=2时,求PQ的值;
(3)当PQ=时,求t的值.
9.已知数轴上点A与点B相距12个单位长度,点A在原点的右侧,到原点的距离为22个单位长度,点B在点A的左侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)点A表示的数为 ,点C表示的数为 .
(2)用含t的代数式表示P与点A的距离:PA=
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,回到点A处停止运动.在点Q运动过程中,求出点Q运动几秒与点P相遇?
10.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度….
(1)动点Q运动3秒时,求此时Q在数轴上表示的数?
(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;
(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴正方向运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.
参考答案
1.解:
(1)点P从点A运动至C点需要的时间
t=6÷1+8÷0.5+(16﹣8)÷1=30(秒)
答:点P从点A运动至C点需要的时间是30秒
(2)由题可知,P,Q两点相遇在线段OB上于M处,设OM=x,则
6÷1+x÷0.5=8÷2+(8﹣x)÷4
解得x=0
∴OM=0表示P,Q两点相遇在线段OB上于O处,即相遇点M所对应的数是0.
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有2种可能:
①动点P在AO上,动点Q在CB上,
则:6﹣t=8﹣2t
解得:t=2.
②动点P在AO上,动点Q在BO上,
则:6﹣t=4(t﹣4)
解得:t=4.4
答:t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
2.解:(1)由图可知:d=a+8,
∵3d﹣2a=14,
∴3a+24﹣2a=14,
解得a=﹣10,
则b=a﹣2=﹣12,c=a+3=﹣7.
故答案是:a+8;﹣12;﹣7;
(2)∵AD=﹣2﹣(﹣10)=﹣2+10=8
BD=﹣2﹣(﹣12)=﹣2+12=10
∴两点的路程之和为:8+10=18.
∴两点的相遇时间为:18÷(4+2)=3.
∴相遇点所表示的数为:﹣12+3×2=﹣6;
(3)存在t=或4时,点A与点B到点C的距离相等,理由如下:
①当点A与点B相遇时:[﹣10﹣(﹣12)]÷(4+2)=.
②当点A在点C右侧时:
t秒时点A、B表示的数分别为:﹣10﹣2t;﹣12+4t
此时点A到点C的距离为:﹣7﹣(﹣10﹣2t)=2t+3
点B到点C的距离为:﹣12+4t﹣(﹣7)=4t﹣5
∴2t+3=4t﹣5
解得t=4.
综上所述:当t=或4时,点A与点B到点C的距离相等.
3.解:(1)动点P从点A运动至点C需要时间t=[0﹣(﹣12)]÷2+(20﹣10)÷2+10÷1=21(秒).
答:动点P从点A运动至点C需要时间为21秒;
(2)由题意可得t>10s,
∴(t﹣6)+2(t﹣10)=10,
解得t=12,
∴点M在折线数轴上所表示的数是6;
(3)当点P在AO上,点Q在CB上时,OP=12﹣2t,BQ=10﹣t,
∵OP=BQ,
∴12﹣2t=10﹣t,
解得t=2;
当点P在OB上时,点Q在CB上时,OP=t﹣6,BQ=10﹣t,
∵OP=BQ,
∴t﹣6=10﹣t,
解得t=8;
当点P在OB上时,点Q在OB上时,OP=t﹣6,BQ=2(t﹣10),
∵OP=BQ,
∴t﹣6=2(t﹣10),
解得t=14;
当点P在BC上时,点Q在OA上时,OP=10+2(t﹣16),BQ=10+(t﹣15),
∵OP=BQ,
∴10+2(t﹣16)=10+(t﹣15)a,
解得t=17.
当t=2,8,14,17时,OP=BQ.
4.解:(1)∵BC=300,AB=AC,
所以AC=600,
C点对应200,
∴A点对应的数为:200﹣600=﹣400;
(2)设x秒时,Q在R右边时,恰好满足MR=4RN,
∴MR=(10+2)×,
RN=[600﹣(5+2)x],
∴MR=4RN,
∴(10+2)×=4×[600﹣(5+2)x],
解得:x=60;
∴60秒时恰好满足MR=4RN;
(3)解:设运动时间为t秒,则:LC=200+5t,KL=800+5t,GL=400+2.5t,AL=400﹣5t;AG=GL﹣AL=7.5t,LC﹣AG=300
答:点L在从点D运动到点A的过程中,LC﹣AG的值不变.
5.(1)∵数轴上A、B两点对应的数分别是﹣4、12,
∴AB=16;
∵CE=8,CF=1,
∴EF=7
∵点F是AE的中点.
∴AF=EF=7
∴AC=AF﹣CF=7﹣1=6
BE=AB﹣AE=16﹣7×2=2
故答案为:16,6,2;
(2)∵点F是AE的中点
∴AF=EF
设AF=FE=x,∴CF=8﹣x
∴BE=16﹣2x=2(8﹣x)
∴BE=2CF
(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+t
PQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|
依题意得:|﹣2t+2|=1
解得:t=或
②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+t
PQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|
依题意得:|﹣4t+34|=1
解得:t=或
∴t为秒,秒,秒,秒时,两点距离是1.
6.解:(1)设经过x分钟后,P、Q两点相遇,依题意得:
4x+6x=60,解得:x=6.
答:经过6分钟后,P、Q两点相遇.
(2)设经过y分钟后,P、Q两点相距20厘米,依题意得:
①4y+6y+20=60,解得:y=4;
②4y+6y﹣20=60,解得:y=8.
答:经过4或8分钟后,P、Q两点相距20厘米.
(3)由题意知,点P、Q只能在直线AB上相遇,则点P旋转到直线上的时间为2分钟或11分钟.
设点Q的速度为t厘米/分,依题意得:
①2t=60﹣16,解得:t=22;
②11t=60,解得:t=.
答:点Q的速度为22厘米/分或厘米/分.
7.解:(1)∵P点运动速度为2cm/s,MO=18cm,
∴当点P在MO上运动时,PO=(18﹣2t)cm,
故答案为:(18﹣2t);
(2)当OP=OQ时,则有18﹣2t=t,
解这个方程,得t=6,
即t=6时,能使OP=OQ;
(3)不能.理由如下:
设当t秒时点P追上点Q,则2t=t+18,
解这个方程,得t=18,
即点P追上点Q需要18s,此时点Q已经停止运动.
8.解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,
∴BP=15﹣(10+t)=5﹣t,AQ=10﹣2t.
故答案为5﹣t,10﹣2t;
(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,
所以PQ=12﹣4=8;
(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,
∴PQ=|2t﹣(10+t)|=|t﹣10|,
∵PQ=,
∴|t﹣10|=2.5,
解得t=12.5或7.5.
9.解:(1)由分析可知,点A表示的数为22,点C表示的数为﹣10;
(2)PA=1×t=t;
(3)(Ⅰ)在点Q向点C运动过程中,设点Q运动x秒与点P相遇,根据题意得
3x=x+12,
解得x=6.
(Ⅱ)在点Q向点A运动过程中,设点Q运动x秒与点P相遇,根据题意得
3x+x=22﹣(﹣10)+10﹣(﹣10),
解得x=13.
答:点Q运动6或13秒后与点P相遇;
故答案为:22,﹣10;t.
10.解:(1)∵数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位,再向左移动2个单位长度,又向右移动3个单位长度,再向右移动4个单位长度…,
∴0.5秒动点Q所在的位置为1,
1.5秒动点Q所在的位置为﹣1,
3秒动点Q所在的位置为2;
(2)(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19)÷2
=190÷2
=95(秒).
故Q运动的时间t为95秒;
(3)∵3秒动点Q所在的位置为2,
∴5秒时,动点Q所在位置为﹣2,
若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,
Q在数轴3位置向左运动时,PQ=5﹣×0.1=,
设点P激活后第一次与继续运动的点Q相遇时用的时间为t,则(2+0.1)t=,
解得:t=,
∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:﹣(2﹣×0.1﹣×0.1)=﹣.
2020年秋北师大版数学七年级上册期末提高专练:数轴类应用题综合(一): 这是一份北师大版七年级上册本册综合课时训练,共10页。试卷主要包含了已知,如图,已知在纸面上有一条数轴,操作探究等内容,欢迎下载使用。
七年级上册第一章 有理数1.2 有理数1.2.2 数轴综合训练题: 这是一份七年级上册第一章 有理数1.2 有理数1.2.2 数轴综合训练题,共23页。试卷主要包含了阅读理解,AC=18等内容,欢迎下载使用。
初中数学人教版七年级上册3.1.1 一元一次方程练习: 这是一份初中数学人教版七年级上册3.1.1 一元一次方程练习,共22页。试卷主要包含了追击问题,相遇问题,8折;,4,,5)=1200,5.等内容,欢迎下载使用。