还剩5页未读,
继续阅读
所属成套资源:2020高考理科数学人教A版一轮复习教学案
成套系列资料,整套一键下载
2020版新一线高考理科数学(人教A版)一轮复习教学案:第2章第8节 函数与方程
展开
第八节 函数与方程
[考纲传真] 结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.
1.函数的零点
(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c
(a>0)的图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
无交点
零点个数
2
1
0
[常用结论]
1.f(a)·f(b)<0是连续函数y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
2.若函数f(x)在[a,b]上是单调函数,且f(x)的图象连续不断,则f(a)·f(b)<0⇒函数f(x)在区间[a,b]上只有一个零点.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数的零点就是函数的图象与x轴的交点.( )
(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( )
(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.( )
(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( )
[答案] (1)× (2)× (3)× (4)√
2.(教材改编)函数f(x)=ln x+2x-6的零点所在的区间是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
C [由题意得f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,
f(3)=ln 3+6-6=ln 3>0,
f(4)=ln 4+8-6=ln 4+2>0,
∴f(x)的零点所在的区间为(2,3).]
3.(教材改编)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
-36.7
-123.6
则函数y=f(x)在区间[1,6]上的零点至少有( )
A.2个 B.3个
C.4个 D.5个
B [∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,
故函数f(x)在区间[1,6]内至少有3个零点.]
4.函数f(x)=x-x的零点有________个.
1 [如图所示,函数f(x)=x-x的零点有1个.]
5.函数f(x)=ax+1-2a在区间(-1,1)上存在一个零点,则实数a的取值范围是________.
[∵函数f(x)的图象为直线,
由题意可得f(-1)·f(1)<0,
∴(-3a+1)·(1-a)<0,解得<a<1,
∴实数a的取值范围是.]
判断函数零点所在的区间
1.函数f(x)=ln x-的零点所在的区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
B [由题意知函数f(x)是增函数,因为f(1)<0,f(2)=ln 2-=ln 2-ln >0,所以函数f(x)的零点所在的区间是(1,2).故选B.]
2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
A [∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;
又函数f(x)是二次函数,最多有两个零点,
因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.]
3.已知函数f(x)=ln x+2x-6的零点在(k∈Z)内,那么k=________.
5 [∵f′(x)=+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上单调递增,且f=ln -1<0,f(3)=ln 3>0,∴f(x)的零点在内,则整数k=5.]
[规律方法] 判断函数零点所在区间的方法
(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上来判断.
(2)利用零点存在性定理进行判断.
(3)数形结合画出函数图象,通过观察图象与x轴在给定区间内是否有交点来判断.
判断函数零点的个数
【例1】 (1)函数f(x)=的零点个数为( )
A.0 B.1
C.2 D.3
(2)设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=ex+x-3,则f(x)的零点个数为( )
A.1 B.2
C.3 D.4
(1)D (2)C [依题意,在考虑x>0时可以画出函数y=ln x与y=x2-2x的图象(如图),可知两个函数的图象有两个交点,当x≤0时,函数f(x)=2x+1与x轴只有一个交点,综上,函数f(x)有3个零点.故选D.
(2)因为函数f(x)是定义域为R的奇函数,所以f(0)=0,即x=0是函数f(x)的1个零点.
当x>0时,令f(x)=ex+x-3=0,则ex=-x+3,分别画出函数y=ex和y=-x+3的图象,如图所示,两函数图象有1个交点,所以函数f(x)有1个零点.
根据对称性知,当x<0时,函数f(x)也有1个零点.综上所述,f(x)的零点个数为3.]
[规律方法] 函数零点个数的判断方法
(1)直接求零点,令f(x)=0,有几个解就有几个零点;
(2)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,再结合函数的图象与性质确定函数零点个数;
(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.
(1)函数f(x)=2x|log0.5 x|-1的零点个数为( )
A.1 B.2
C.3 D.4
(2)已知函数f(x)=若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为________.
(1)B (2)3 [(1)令f(x)=2x|log0.5x|-1=0,
可得|log0.5x|=x.
设g(x)=|log0.5x|,h(x)=x.
在同一坐标系下分别画出函数g(x),h(x)的图象,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.故选B.
(2)依题意得
由此解得
由g(x)=0得f(x)+x=0,
该方程等价于①
或②
解①得x=2,解②得x=-1或x=-2.因此,函数g(x)=f(x)+x的零点个数为3.]
函数零点的应用
【例2】 (1)设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则( )
A.g(a)<0<f(b) B.f(b)<0<g(a)
C.0<g(a)<f(b) D.f(b)<g(a)<0
(2)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.
(1)A (2)(3,+∞) [(1)∵f(x)=ex+x-2,
∴f′(x)=ex+1>0,
则f(x)在R上为增函数,
又f(0)=e0-2<0,f(1)=e-1>0,
且f(a)=0,∴0<a<1.∵g(x)=ln x+x2-3,
∴g′(x)=+2x.
当x∈(0,+∞)时,g′(x)>0,
∴g(x)在(0,+∞)上为增函数,
又g(1)=ln 1-2=-2<0,g(2)=ln 2+1>0,且g(b)=0,∴1<b<2,∴a<b,
∴故选A.
(2)画出f(x)的草图如图所示,若存在实数b,使得f(x)=b有3个不同的根,
则4m-m2<m,即m2-3m>0,
又m>0,解得m>3.]
[规律方法] 已知函数有零点求参数取值范围常用的方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
(1)已知函数f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零点依次为a,b,c,则( )
A.a<b<c B.c<b<a
C.c<a<b D.b<a<c
(2)函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是( )
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
(1)A (2)C [(1)在同一坐标系中,画出函数y=ex,y=ln x与y=-x,y=-1的图象如图所示.
由图可知a<b<c,
故选A.
(2)∵函数f(x)=2x--a在区间(1,2)上单调递增,又函数f(x)=2x--a的一个零点在区间(1,2)内,则有f(1)·f(2)<0,
∴(-a)(4-1-a)<0,即a(a-3)<0,∴0<a<3.]
1.(2018·全国卷Ⅰ)已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( )
A.[-1,0) B.[0,+∞)
C.[-1,+∞) D.[1,+∞)
C [函数g(x)=f(x)+x+a存在2个零点,即关于x的方程f(x)=-x-a有2个不同的实根,即函数f(x)的图象与直线y=-x-a有2个交点,作出直线y=-x-a与函数f(x)的图象,如图所示,
由图可知,-a≤1,解得a≥-1,故选C.]
2.(2017·全国卷Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=( )
A.- B.
C. D.1
C [法一:f(x)=x2-2x+a(ex-1+e-x+1)=(x-1)2+a[ex-1+e-(x-1)]-1,
令t=x-1,则g(t)=f(t+1)=t2+a(et+e-t)-1.
∵g(-t)=(-t)2+a(e-t+et)-1=g(t),
∴函数g(t)为偶函数.
∵f(x)有唯一零点,∴g(t)也有唯一零点.
又g(t)为偶函数,由偶函数的性质知g(0)=0,
∴2a-1=0,解得a=.
故选C.
法二:f(x)=0⇔a(ex-1+e-x+1)=-x2+2x.
ex-1+e-x+1≥2=2,
当且仅当x=1时取“=”.
又-x2+2x=-(x-1)2+1≤1,当且仅当x=1时取“=”.
若a>0,则a(ex-1+e-x+1)≥2a,
要使f(x)有唯一零点,则必有2a=1,即a=.
若a≤0,则f(x)的零点不唯一.
故选C.]
第八节 函数与方程
[考纲传真] 结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.
1.函数的零点
(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c
(a>0)的图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
无交点
零点个数
2
1
0
[常用结论]
1.f(a)·f(b)<0是连续函数y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
2.若函数f(x)在[a,b]上是单调函数,且f(x)的图象连续不断,则f(a)·f(b)<0⇒函数f(x)在区间[a,b]上只有一个零点.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数的零点就是函数的图象与x轴的交点.( )
(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( )
(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.( )
(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( )
[答案] (1)× (2)× (3)× (4)√
2.(教材改编)函数f(x)=ln x+2x-6的零点所在的区间是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
C [由题意得f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,
f(3)=ln 3+6-6=ln 3>0,
f(4)=ln 4+8-6=ln 4+2>0,
∴f(x)的零点所在的区间为(2,3).]
3.(教材改编)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
-36.7
-123.6
则函数y=f(x)在区间[1,6]上的零点至少有( )
A.2个 B.3个
C.4个 D.5个
B [∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,
故函数f(x)在区间[1,6]内至少有3个零点.]
4.函数f(x)=x-x的零点有________个.
1 [如图所示,函数f(x)=x-x的零点有1个.]
5.函数f(x)=ax+1-2a在区间(-1,1)上存在一个零点,则实数a的取值范围是________.
[∵函数f(x)的图象为直线,
由题意可得f(-1)·f(1)<0,
∴(-3a+1)·(1-a)<0,解得<a<1,
∴实数a的取值范围是.]
判断函数零点所在的区间
1.函数f(x)=ln x-的零点所在的区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
B [由题意知函数f(x)是增函数,因为f(1)<0,f(2)=ln 2-=ln 2-ln >0,所以函数f(x)的零点所在的区间是(1,2).故选B.]
2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
A [∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;
又函数f(x)是二次函数,最多有两个零点,
因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.]
3.已知函数f(x)=ln x+2x-6的零点在(k∈Z)内,那么k=________.
5 [∵f′(x)=+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上单调递增,且f=ln -1<0,f(3)=ln 3>0,∴f(x)的零点在内,则整数k=5.]
[规律方法] 判断函数零点所在区间的方法
(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上来判断.
(2)利用零点存在性定理进行判断.
(3)数形结合画出函数图象,通过观察图象与x轴在给定区间内是否有交点来判断.
判断函数零点的个数
【例1】 (1)函数f(x)=的零点个数为( )
A.0 B.1
C.2 D.3
(2)设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=ex+x-3,则f(x)的零点个数为( )
A.1 B.2
C.3 D.4
(1)D (2)C [依题意,在考虑x>0时可以画出函数y=ln x与y=x2-2x的图象(如图),可知两个函数的图象有两个交点,当x≤0时,函数f(x)=2x+1与x轴只有一个交点,综上,函数f(x)有3个零点.故选D.
(2)因为函数f(x)是定义域为R的奇函数,所以f(0)=0,即x=0是函数f(x)的1个零点.
当x>0时,令f(x)=ex+x-3=0,则ex=-x+3,分别画出函数y=ex和y=-x+3的图象,如图所示,两函数图象有1个交点,所以函数f(x)有1个零点.
根据对称性知,当x<0时,函数f(x)也有1个零点.综上所述,f(x)的零点个数为3.]
[规律方法] 函数零点个数的判断方法
(1)直接求零点,令f(x)=0,有几个解就有几个零点;
(2)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,再结合函数的图象与性质确定函数零点个数;
(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.
(1)函数f(x)=2x|log0.5 x|-1的零点个数为( )
A.1 B.2
C.3 D.4
(2)已知函数f(x)=若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为________.
(1)B (2)3 [(1)令f(x)=2x|log0.5x|-1=0,
可得|log0.5x|=x.
设g(x)=|log0.5x|,h(x)=x.
在同一坐标系下分别画出函数g(x),h(x)的图象,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.故选B.
(2)依题意得
由此解得
由g(x)=0得f(x)+x=0,
该方程等价于①
或②
解①得x=2,解②得x=-1或x=-2.因此,函数g(x)=f(x)+x的零点个数为3.]
函数零点的应用
【例2】 (1)设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则( )
A.g(a)<0<f(b) B.f(b)<0<g(a)
C.0<g(a)<f(b) D.f(b)<g(a)<0
(2)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.
(1)A (2)(3,+∞) [(1)∵f(x)=ex+x-2,
∴f′(x)=ex+1>0,
则f(x)在R上为增函数,
又f(0)=e0-2<0,f(1)=e-1>0,
且f(a)=0,∴0<a<1.∵g(x)=ln x+x2-3,
∴g′(x)=+2x.
当x∈(0,+∞)时,g′(x)>0,
∴g(x)在(0,+∞)上为增函数,
又g(1)=ln 1-2=-2<0,g(2)=ln 2+1>0,且g(b)=0,∴1<b<2,∴a<b,
∴故选A.
(2)画出f(x)的草图如图所示,若存在实数b,使得f(x)=b有3个不同的根,
则4m-m2<m,即m2-3m>0,
又m>0,解得m>3.]
[规律方法] 已知函数有零点求参数取值范围常用的方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
(1)已知函数f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零点依次为a,b,c,则( )
A.a<b<c B.c<b<a
C.c<a<b D.b<a<c
(2)函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是( )
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
(1)A (2)C [(1)在同一坐标系中,画出函数y=ex,y=ln x与y=-x,y=-1的图象如图所示.
由图可知a<b<c,
故选A.
(2)∵函数f(x)=2x--a在区间(1,2)上单调递增,又函数f(x)=2x--a的一个零点在区间(1,2)内,则有f(1)·f(2)<0,
∴(-a)(4-1-a)<0,即a(a-3)<0,∴0<a<3.]
1.(2018·全国卷Ⅰ)已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( )
A.[-1,0) B.[0,+∞)
C.[-1,+∞) D.[1,+∞)
C [函数g(x)=f(x)+x+a存在2个零点,即关于x的方程f(x)=-x-a有2个不同的实根,即函数f(x)的图象与直线y=-x-a有2个交点,作出直线y=-x-a与函数f(x)的图象,如图所示,
由图可知,-a≤1,解得a≥-1,故选C.]
2.(2017·全国卷Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=( )
A.- B.
C. D.1
C [法一:f(x)=x2-2x+a(ex-1+e-x+1)=(x-1)2+a[ex-1+e-(x-1)]-1,
令t=x-1,则g(t)=f(t+1)=t2+a(et+e-t)-1.
∵g(-t)=(-t)2+a(e-t+et)-1=g(t),
∴函数g(t)为偶函数.
∵f(x)有唯一零点,∴g(t)也有唯一零点.
又g(t)为偶函数,由偶函数的性质知g(0)=0,
∴2a-1=0,解得a=.
故选C.
法二:f(x)=0⇔a(ex-1+e-x+1)=-x2+2x.
ex-1+e-x+1≥2=2,
当且仅当x=1时取“=”.
又-x2+2x=-(x-1)2+1≤1,当且仅当x=1时取“=”.
若a>0,则a(ex-1+e-x+1)≥2a,
要使f(x)有唯一零点,则必有2a=1,即a=.
若a≤0,则f(x)的零点不唯一.
故选C.]
相关资料
更多