还剩7页未读,
继续阅读
所属成套资源:2020高考理科数学人教A版一轮复习教学案
成套系列资料,整套一键下载
2020版新一线高考理科数学(人教A版)一轮复习教学案:第2章第9节 函数模型及其应用
展开
第九节 函数模型及其应用
[考纲传真] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
1.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=+b(k,b为常数且k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(a,b,c为常数,b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(m,n,a为常数,a>0,a≠1,m≠0).
(6)幂函数模型:y=a·xn+b(a≠0).
2.三种函数模型之间增长速度的比较
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
因n而异
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
3.解函数应用问题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)解模:求解数学模型,得出数学结论;
(4)还原:将数学问题还原为实际问题.
以上过程用框图表示如下:
[常用结论]
形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:
(1)该函数在(-∞,-]和[,+∞)内单调递增,在[-,0]和(0,]上单调递减.
(2)当x>0时,x=时取最小值2,
当x<0时,x=-时取最大值-2.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数y=2x与函数y=x2的图象有且只有两个公共点.( )
(2)幂函数增长比直线增长更快.( )
(3)不存在x0,使ax0<x<logax0.( )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).( )
[答案] (1)× (2)× (3)× (4)√
2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表,则x,y最适合的函数是( )
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2 x
D [当x=0.50时,y=-0.99,从而排除选项A、C,又当x=2.01时,y=0.98,从而排除选项B,故选D.]
3.(教材改编)一个工厂生产一种产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=0.1x2+10x+300(0<x≤240,x∈N),若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品成本)时的产量是( )
A.70台 B.75台
C.80台 D.85台
B [由题意可知,利润f(x)=25x-y=-0.1x2+15x-300,(0<x≤240,x∈N)
∴当x=75时,f(x)取到最大,故选B.]
4.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )
A.减少7.84% B.增加7.84%
C.减少9.5% D.不增不减
A [设某商品原来价格为a,四年后价格为:
a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,
(0.921 6-1)a=-0.078 4a,
所以四年后的价格与原来价格比较,减少7.84%.]
5.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.
y= [由题意可知,当0<x≤100时,y=0.5x.
当x>100时,y=100×0.5+(x-100)×0.4
=0.4x+10.
∴y=]
用函数图象刻画变化过程
1.如图,在不规则图形ABCD中,AB和CD是线段,AD和BC是圆弧,直线l⊥AB于E,当l从左至右移动(与线段AB有公共点)时,把图形ABCD分成两部分,设AE=x,左侧部分面积为y,则y关于x的大致图象为( )
A B C D
D [因为左侧部分面积为y,随x的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D选项适合.]
2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )
A B C D
B [因为运输效率逐步提高,故曲线上每点处的切线斜率应该逐渐增大,故选B.]
3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
D [根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.]
[规律方法] 判断函数图象与实际问题中两变量变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.
(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
应用所给函数模型解决实际问题
【例1】 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=x2+x(万元).在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
[解] (1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,
依题意得,当0<x<8时,
L(x)=5x--3=-x2+4x-3;
当x≥8时,L(x)=5x--3=35-.
所以L(x)=
(2)当0<x<8时,L(x)=-(x-6)2+9.
此时,当x=6时,L(x)取得最大值L(6)=9万元,
当x≥8时,L(x)=35-≤35-2=35-20=15,此时,当且仅当x=,即x=10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.
[规律方法] 求解所给函数模型解决实际问题的关注点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
易错警示:(1)解决实际问题时要注意自变量的取值范围.
(2)利用模型求解最值时,注意取得最值时等号成立的条件.
(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )
A.3.50分钟 B.3.75分钟
C.4.00分钟 D.4.25分钟
(2)(2019·沈阳模拟)一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.
(1)B (2)16 [(1)根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,
联立方程组得
消去c化简得
解得
所以p=-0.2t2+1.5t-2
=-+-2
=-2+,
所以当t==3.75时,p取得最大值,
即最佳加工时间为3.75分钟.
(2)当t=0时,y=a,当t=8时,y=ae-8b=a,
∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=ae-b t=a,e-b t==(e-8 b)3=e-24b,则t=24,所以再经过16 min.]
构建函数模型解决实际问题
【例2】 某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超出1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
[解] (1)当x≤6时,y=50x-115.
令50x-115>0,解得x>2.3.
∵x∈N*,∴3≤x≤6,x∈N*.
当x>6时,y=[50-3(x-6)]x-115.
令[50-3(x-6)]x-115>0,有3x2-68x+115<0.
又x∈N*,∴6<x≤20(x∈N*),
故y=
(2)对于y=50x-115(3≤x≤6,x∈N*),显然当x=6时,ymax=185.
对于y=-3x2+68x-115=-32+(6<x≤20,x∈N*),
当x=11时,ymax=270.又∵270>185,
∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.
[规律方法] 构建函数模型解决实际问题的常见类型与求解方法
(1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.
(2)构建分段函数模型,应用分段函数分段求解的方法.
(3)构建f(x)=x+(a>0)模型,常用基本不等式、导数等知识求解.
易错警示:求解过程中不要忽视实际问题是对自变量的限制.
(2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2018年 B.2019年
C.2020年 D.2021年
B [设2015年后的第n年该公司投入的研发资金开始超过200万元.由130(1+12%)n>200,得1.12n>,两边取常用对数,得n>≈=,∴n≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元.]
函数模型的选择
【例3】 (2019·沈阳模拟)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下降,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可供选择:①f(x)=p·qx;②f(x)=px2+qx+7;③f(x)=logq(x+p).其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推x∈[0,5])
(1)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;
(2)对(1)中所选的函数f(x),若f(2)=11,f(3)=10,记g(x)=,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?
[解] (1)根据题意,该种水果价格变化趋势是先单调递增后一直单调递减,基本符合开口向下的二次函数变化趋势,
故应该选择②f(x)=px2+qx+7.
(2)由f(2)=11,f(3)=10解得f(x)=-x2+4x+7.
g(x)=
=-
=-.
因为-≤-2,
当且仅当x+1=3,即x=2时等号成立.
所以明年拓展外销的时间应为6月1号.
[规律方法] 根据实际问题选择函数模型时应注意以下几点:
(1)若能够根据实际问题作出满足题意的函数图象,可结合图象特征选择.
(2)当研究的问题呈现先增长后减少的特点时,可以选用二次函数模型y=ax2+bx+c(a,b,c均为常数,a<0);当研究的问题呈现先减少后增长的特点时,可以选用二次函数模型y=ax2+bx+c(a,b,c均为常数,a>0).
(3)对数函数(底数大于1时)增长越来越慢,而指数函数(底数大于1时)增长越来越快.
某商场2018年1月份到12月份销售额呈现先下降后上升的趋势,下列四个函数中,能较准确地反映商场月销售额f(x)与月份x的关系且满足f(1)=8,f(3)=2的函数为( )
A.f(x)=20×x
B.f(x)=-6log3 x+8
C.f(x)=x2-12x+19
D.f(x)=x2-7x+14
D [把f(1)=8,f(3)=2逐一代入四个选项中,并结合f(x)与x间呈先下降后上升的趋势,不难选出选项D符合.]
第九节 函数模型及其应用
[考纲传真] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
1.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=+b(k,b为常数且k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(a,b,c为常数,b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(m,n,a为常数,a>0,a≠1,m≠0).
(6)幂函数模型:y=a·xn+b(a≠0).
2.三种函数模型之间增长速度的比较
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
因n而异
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
3.解函数应用问题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)解模:求解数学模型,得出数学结论;
(4)还原:将数学问题还原为实际问题.
以上过程用框图表示如下:
[常用结论]
形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:
(1)该函数在(-∞,-]和[,+∞)内单调递增,在[-,0]和(0,]上单调递减.
(2)当x>0时,x=时取最小值2,
当x<0时,x=-时取最大值-2.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数y=2x与函数y=x2的图象有且只有两个公共点.( )
(2)幂函数增长比直线增长更快.( )
(3)不存在x0,使ax0<x<logax0.( )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).( )
[答案] (1)× (2)× (3)× (4)√
2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表,则x,y最适合的函数是( )
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2 x
D [当x=0.50时,y=-0.99,从而排除选项A、C,又当x=2.01时,y=0.98,从而排除选项B,故选D.]
3.(教材改编)一个工厂生产一种产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=0.1x2+10x+300(0<x≤240,x∈N),若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品成本)时的产量是( )
A.70台 B.75台
C.80台 D.85台
B [由题意可知,利润f(x)=25x-y=-0.1x2+15x-300,(0<x≤240,x∈N)
∴当x=75时,f(x)取到最大,故选B.]
4.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )
A.减少7.84% B.增加7.84%
C.减少9.5% D.不增不减
A [设某商品原来价格为a,四年后价格为:
a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,
(0.921 6-1)a=-0.078 4a,
所以四年后的价格与原来价格比较,减少7.84%.]
5.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.
y= [由题意可知,当0<x≤100时,y=0.5x.
当x>100时,y=100×0.5+(x-100)×0.4
=0.4x+10.
∴y=]
用函数图象刻画变化过程
1.如图,在不规则图形ABCD中,AB和CD是线段,AD和BC是圆弧,直线l⊥AB于E,当l从左至右移动(与线段AB有公共点)时,把图形ABCD分成两部分,设AE=x,左侧部分面积为y,则y关于x的大致图象为( )
A B C D
D [因为左侧部分面积为y,随x的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D选项适合.]
2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )
A B C D
B [因为运输效率逐步提高,故曲线上每点处的切线斜率应该逐渐增大,故选B.]
3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
D [根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.]
[规律方法] 判断函数图象与实际问题中两变量变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.
(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
应用所给函数模型解决实际问题
【例1】 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=x2+x(万元).在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
[解] (1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,
依题意得,当0<x<8时,
L(x)=5x--3=-x2+4x-3;
当x≥8时,L(x)=5x--3=35-.
所以L(x)=
(2)当0<x<8时,L(x)=-(x-6)2+9.
此时,当x=6时,L(x)取得最大值L(6)=9万元,
当x≥8时,L(x)=35-≤35-2=35-20=15,此时,当且仅当x=,即x=10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.
[规律方法] 求解所给函数模型解决实际问题的关注点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
易错警示:(1)解决实际问题时要注意自变量的取值范围.
(2)利用模型求解最值时,注意取得最值时等号成立的条件.
(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )
A.3.50分钟 B.3.75分钟
C.4.00分钟 D.4.25分钟
(2)(2019·沈阳模拟)一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.
(1)B (2)16 [(1)根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,
联立方程组得
消去c化简得
解得
所以p=-0.2t2+1.5t-2
=-+-2
=-2+,
所以当t==3.75时,p取得最大值,
即最佳加工时间为3.75分钟.
(2)当t=0时,y=a,当t=8时,y=ae-8b=a,
∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=ae-b t=a,e-b t==(e-8 b)3=e-24b,则t=24,所以再经过16 min.]
构建函数模型解决实际问题
【例2】 某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超出1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
[解] (1)当x≤6时,y=50x-115.
令50x-115>0,解得x>2.3.
∵x∈N*,∴3≤x≤6,x∈N*.
当x>6时,y=[50-3(x-6)]x-115.
令[50-3(x-6)]x-115>0,有3x2-68x+115<0.
又x∈N*,∴6<x≤20(x∈N*),
故y=
(2)对于y=50x-115(3≤x≤6,x∈N*),显然当x=6时,ymax=185.
对于y=-3x2+68x-115=-32+(6<x≤20,x∈N*),
当x=11时,ymax=270.又∵270>185,
∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.
[规律方法] 构建函数模型解决实际问题的常见类型与求解方法
(1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.
(2)构建分段函数模型,应用分段函数分段求解的方法.
(3)构建f(x)=x+(a>0)模型,常用基本不等式、导数等知识求解.
易错警示:求解过程中不要忽视实际问题是对自变量的限制.
(2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2018年 B.2019年
C.2020年 D.2021年
B [设2015年后的第n年该公司投入的研发资金开始超过200万元.由130(1+12%)n>200,得1.12n>,两边取常用对数,得n>≈=,∴n≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元.]
函数模型的选择
【例3】 (2019·沈阳模拟)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下降,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可供选择:①f(x)=p·qx;②f(x)=px2+qx+7;③f(x)=logq(x+p).其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推x∈[0,5])
(1)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;
(2)对(1)中所选的函数f(x),若f(2)=11,f(3)=10,记g(x)=,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?
[解] (1)根据题意,该种水果价格变化趋势是先单调递增后一直单调递减,基本符合开口向下的二次函数变化趋势,
故应该选择②f(x)=px2+qx+7.
(2)由f(2)=11,f(3)=10解得f(x)=-x2+4x+7.
g(x)=
=-
=-.
因为-≤-2,
当且仅当x+1=3,即x=2时等号成立.
所以明年拓展外销的时间应为6月1号.
[规律方法] 根据实际问题选择函数模型时应注意以下几点:
(1)若能够根据实际问题作出满足题意的函数图象,可结合图象特征选择.
(2)当研究的问题呈现先增长后减少的特点时,可以选用二次函数模型y=ax2+bx+c(a,b,c均为常数,a<0);当研究的问题呈现先减少后增长的特点时,可以选用二次函数模型y=ax2+bx+c(a,b,c均为常数,a>0).
(3)对数函数(底数大于1时)增长越来越慢,而指数函数(底数大于1时)增长越来越快.
某商场2018年1月份到12月份销售额呈现先下降后上升的趋势,下列四个函数中,能较准确地反映商场月销售额f(x)与月份x的关系且满足f(1)=8,f(3)=2的函数为( )
A.f(x)=20×x
B.f(x)=-6log3 x+8
C.f(x)=x2-12x+19
D.f(x)=x2-7x+14
D [把f(1)=8,f(3)=2逐一代入四个选项中,并结合f(x)与x间呈先下降后上升的趋势,不难选出选项D符合.]
相关资料
更多