初中数学北师大版八年级上册6 实数教学设计
展开一、教材分析
实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.
二、学情分析
七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.
三、目标分析
1.教学目标
●知识与技能目标
(1)了解有理数的运算法则在实数范围内仍然适用.
(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.
(3)正确运用公式:
(≥0,≥0) (≥0, >0)
这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.
●过程与方法目标
(1)通过具体数值的运算,发现规律,归纳总结出规律.
(2)能用类比的方法解决问题,用已有知识去探索新知识.
●情感与态度目标
由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.
2.教学重点
(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.
(2)发现规律:
(≥0,≥0) (≥0, >0)
3.教学难点
(1)类比的学习方法.
(2)发现规律的过程.
4.教学方法
(1)探索——交流法.
(2)课前准备:教材、课件、电脑.电脑软件:Wrd,Pwerpint.
四、教学过程
本节课设计了六个教学环节:
第一环节:复习引入;
第二环节:知识探究;
第三环节:知识巩固;
第四环节:知识拓展;
第五环节:课时小结;
第六环节:作业布置.
第一环节:复习引入
问题1 :有理数中学过哪些运算及运算律?
答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.
问题2:实数包含哪些数?
答:有理数,无理数.
问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?
答:这是我们本节课要解决的新问题.
意图:通过问题,回顾旧知,为导出新知打好基础。
第二环节:知识探究
内容:引导学生探究出有关运算法则和运算率,并利用这些运算法则或运算解决简单的问题。
具体过程如下:
1探索:要回答上面提出的问题,因为实数包括有理数和无理数,我们只需在无理数中验证一下运算法则及运算律是否成立.
用计算器可验证:, (加法交换律)
, (乘法交换律)
, (乘法结合律)
, (分配律)
2明晰: 以上说明有理数的运算法则与运算律在实数范围内仍然适用.
3巩固:
例1 计算:
(1); (2); (3).
解:(1)==;
(2)=1+2=3;
(3)===20.
意图:通过具体数据的验证,使学生明确:有理数中的法则、运算律在实数范围内仍然适用.
内容:通过探究得出,。
具体过程如下:
(1)= ,= ;
= ,= ;
= ,= ; = ,= .
(2)用计算器计算:
= ,= ;= ,= .
问题1:观察上面的结果你可得出什么结论?
问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?
问题3:其中的字母a,b有限制条件吗?
意图:最终归纳出(a≥0,b≥0),(a≥0, b>0).
说明:公式中字母a≥0,b≥0(或b>0)这一条件是公式的一部分,不应忽略.
第三环节:知识巩固
例2 化简
(1); (2); (3);
(4); (5).
解:(1)===6-5=1;
(2)=====3;
(3)===;
(4)==2-1=1;
(5)====-24.
练习:
化简:(1); (2); (3);
(4); (5).
解:(1)===;
(2)=====3;
(3)===;
(4)===;
(5)===.
意图:巩固新知,提高能力.
第四环节:知识拓展
说明:这部分根据学生的实际情况进行取舍,程度好的班级可选用,基础不好的班级舍去.
练习:
﹡1.化简:(1); (2);
(3); (4); (5).
解:(1)====10;
(2)===;
(3)===;
(4)=====14;
(5)=====6.
﹡2.一个直角三角形的两条直角边的长分别是和,求这个直角三角形的面积.
解:S=====7.5cm2.
第五环节:课堂小结
本节课主要内容:
(1)在实数范围内,有理数的运算法则及运算律仍然成立,能正确运用.
(2)掌握并会运用公式:(a≥0,b≥0),(a≥0,b>0).
(3)理解本节课中用过的数学方法:类比,找规律,归纳总结.
第六环节:课后作业
(1)习题 2.9 1,2,
(2)补充作业:计算:
(1); (2); (3); (4);
(5); (6); (7).
答案:(1)28;(2)-108;(3)180;(4)30;(5)4.8;(6)1;(7)9.
五、教学反思
1.关注类比,提出重点
本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.
2.对运算技能要求恰当定位
根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等,对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求。
3.分层教学
本节课的教学设计中考虑了学生的层次不同,对知识深度和广度的要求也有所不同,因此,增加了知识拓展的内容,供层次高一些的学生及班级选用.
初中数学北师大版八年级上册6 实数教案设计: 这是一份初中数学北师大版八年级上册6 实数教案设计,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。
初中数学北师大版八年级上册第二章 实数6 实数教案: 这是一份初中数学北师大版八年级上册第二章 实数6 实数教案,共5页。教案主要包含了典型例题等内容,欢迎下载使用。
初中数学北师大版八年级上册第二章 实数6 实数教学设计: 这是一份初中数学北师大版八年级上册第二章 实数6 实数教学设计,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。