北师大版2021年中考数学总复习《图形的平移与旋转》(含答案) 试卷
展开北师大版2021年中考数学总复习
《图形的平移与旋转》
一 、选择题
1.下列图形可由平移得到的是( )
2.下列说法正确的是( )
A.一个图形平移后,它各点的横、纵坐标都发生变化
B.一个图形平移后,它的大小发生变化,形状不变
C.把一个图形沿y轴平移若干个单位长度后,与原图形相比各点的横坐标没有发生变化
D.图形平移后,一些点的坐标可以不发生变化
3.在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整的图案,才能拼成一个完整的图案,使其自动消失.( )
A.向右平移1格 B.向左平移1格 C.向右平移2格 D.向右平移3格
4.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( )
A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)
5.下列图形,可以看作中心对称图形的是( )
A. B. C. D.
6.在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(﹣3,﹣4)
7.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移3
B.△ABC绕点C顺时针旋转90°,再向下平移1
C.△ABC绕点C逆时针旋转90°,再向下平移1
D.△ABC绕点C逆时针旋转90°,再向下平移3
8.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′坐标为( )
A.(,) B.(,) C.(,) D.(,4)
二 、填空题
9.在下列图形:①圆 ②等边三角形 ③矩形 ④平行四边形中,既是中心对称图形又是轴对称图形的是 (填写序号).
10.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是 .
11.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是__________度.
12.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 .
三 、作图题
13.如图所示,△A′B′C′是△ABC经过平移得到的,A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).
(1)请写出三角形ABC平移的过程;
(2)分别写出点A′,B′,C′的坐标;
(3)求△A′B′C′的面积.
14.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;
(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.
四 、解答题
15.如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BP′C的度数.
16.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:四边形ABFE是菱形.
参考答案
1.A
2.C.
3.C
4.D
5.答案为:B.
6.答案为:B.
7.A
8.C
9.答案为:①③
10.答案为:点N.
11.答案为:80.
12.答案为:(36,0).
13.解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4),
∴平移后对应点的横坐标加6,纵坐标加4,
∴△ABC先向右平移6个单位,再向上平移4个单位得到△A′B′C′
或△ABC先向上平移4个单位,再向右平移6个单位得到△A′B′C′;
(2)由(1)可知,A′(2,3),B′(1,0),C′(5,1);
(3)如图所示,S△A′B′C′=3×4﹣×1×3﹣×1×4﹣×2×3=5.5.
14.解:(1)如图,△A1B1C1为所作,A(﹣2,﹣6);
(2)如图,△A2B2C2为所作.
15.解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′==2,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA2+PP′2=AP′2,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
16.(1)证明:∵△ABC绕点A按逆时针方向旋转100°,
∴∠BAC=∠DAE=40°,
∴∠BAD=∠CAE=100°,
又∵AB=AC,∴AB=AC=AD=AE,
在△ABD与△ACE中
∴△ABD≌△ACE(SAS).
(2)解:∵∠CAE=100°,AC=AE,
∴∠ACE=40°;
(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.