终身会员
搜索
    上传资料 赚现金
    (新)人教B版(2019)必修第三册章末综合测评1 三角函数(含解析)
    立即下载
    加入资料篮
    (新)人教B版(2019)必修第三册章末综合测评1 三角函数(含解析)01
    (新)人教B版(2019)必修第三册章末综合测评1 三角函数(含解析)02
    (新)人教B版(2019)必修第三册章末综合测评1 三角函数(含解析)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)必修 第三册第七章 三角函数本章综合与测试优秀达标测试

    展开
    这是一份人教B版 (2019)必修 第三册第七章 三角函数本章综合与测试优秀达标测试,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    (时间:120分钟 满分:150分)


    一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)


    1.在①160°;②480°;③-960°;④1 530°这四个角中,属于第二象限角的是( )


    A.① B.①②


    C.①②③ D.①②③④


    C [160°角显然是第二象限角;480°=360°+120°是第二象限角;-960°=-3×360°+120°是第二象限角;1 530°=4×360°+90°不是第二象限角.]


    2.若2弧度的圆心角所对的弧长为2 cm,则这个圆心角所夹的扇形的面积是( )


    A.4 cm2 B.2 cm2 C.4π cm2 D.1 cm2


    D [由弧长公式得2=2R,即R=1 cm,则S=eq \f(1,2)Rl=eq \f(1,2)×1×2=1(cm2).]


    3.函数y=cs x·tan x的值域是( )


    A.(-1,0)∪(0,1) B.[-1,1]


    C.(-1,1) D.[-1,0]∪(0,1)


    C [化简得y=sin x,由cs x≠0,得sin x≠±1.故得函数的值域(-1,1).]


    4.三角函数y=sin eq \f(x,2) 是( )


    A.周期为4π的奇函数 B.周期为eq \f(π,2) 的奇函数


    C.周期为π的偶函数 D.周期为2π的偶函数


    A [f(-x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,2)))=-sin eq \f(x,2)=-f(x),是奇函数,T=eq \f(2π,\f(1,2))=4π.]


    5.方程sin x=lg x的实根个数是( )


    A.1 B.2


    C.3 D.4


    C [y=sin x与y=lg x的图像共有3个交点.]


    6.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=eq \f(1,3) ,则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,12)))的值为( )


    A.eq \f(1,3)B.-eq \f(1,3)


    C.-eq \f(2\r(2),3) D.eq \f(2\r(2),3)


    B [根据题意得:cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,12)))=cseq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))+\f(π,2)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=-eq \f(1,3) ,故选B.]


    7.函数f(x)=eq \r(3) sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))-1的最小值和最小正周期分别是( )


    A.-eq \r(3)-1,π B.-eq \r(3)+1,π


    C.-eq \r(3) ,π D.-eq \r(3)-1,2π


    A [f(x)min=-eq \r(3)-1,T=eq \f(2π,2)=π.]


    8.要得到函数y=f(2x+π)的图像,只要将函数y=f(x)的图像( )


    A.向左平移π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变


    B.向右平移π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变


    C.向左平移π个单位,再把所有点的横坐标缩短到原来的eq \f(1,2) ,纵坐标不变


    D.向右平移π个单位,再把所有点的横坐标缩短到原来的eq \f(1,2) ,纵坐标不变


    C [把y=f(x)的图像向左平移π个单位得到y=f(x+π),再把所有点的横坐标缩短到原来的eq \f(1,2) ,纵坐标不变得到y=f(2x+π).]


    9.函数f(x)=cs(3x+φ)的图像关于原点成中心对称,则φ等于( )


    A.-eq \f(π,2) B.2kπ-eq \f(π,2)(k∈Z)


    C.kπ(k∈Z) D.kπ+eq \f(π,2)(k∈Z)


    D [若函数f(x)=cs(3x+φ)的图像关于原点成中心对称,则f(0)=cs φ=0,∴φ=kπ+eq \f(π,2)(k∈Z).]


    10.函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))的图像( )


    A.关于原点成中心对称


    B.关于y轴成轴对称


    C.关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),0))成中心对称


    D.关于直线x=eq \f(π,12) 成轴对称


    C [由形如y=Asin(ωx+φ)函数图像的对称中心和对称轴的意义,分别将各选项代入检验即可,由于feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)))=0,故函数的图像关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),0))成中心对称.]


    11.函数y=Asin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(A>0,ω>0,|φ|<\f(π,2)))的部分图像如图所示,则该函数的表达式为( )





    A.y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(5,6)π))


    B.y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(5,6)π))


    C.y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))


    D.y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))


    C [由图像可知,A=2,ω=eq \f(2π,π)=2,当x=eq \f(π,6)时,y=2,从而有2×eq \f(π,6)+φ=eq \f(π,2) ,∴φ=eq \f(π,6) ,故选C.]


    12.在△ABC中,C>eq \f(π,2),若函数y=f(x)在[0,1]上为单调递减函数,则下列命题正确的是( )


    A.f(cs A)>f(cs B) B.f(sin A)>f(sin B)


    C.f(sin A)>f(cs B) D.f(sin A)

    C [根据0

    二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)


    13.函数y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))的定义域为________.


    eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x≠\f(3π,8)+\f(kπ,2),k∈Z)))) [2x-eq \f(π,4)≠eq \f(π,2)+kπ,即x≠eq \f(3π,8)+eq \f(kπ,2) ,k∈Z.]


    14.如图,已知函数y=sineq \f(πx,3)在区间[0,t]上至少取得2次最大值,则正整数t的最小值是________.


    8 [T=6,则eq \f(5T,4)≤t,∴t≥eq \f(15,2),


    ∴tmin=8.]


    15.函数y=-tan x的单调递减区间是________.


    eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z) [因为y=tan x与y=


    -tan x的单调性相反,所以y=-tan x的单调递减区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)+kπ,\f(π,2)+kπ))(k∈Z).]


    16.已知tan θ=2,则eq \f(sin θ,sin3θ-cs3θ)=________.


    eq \f(10,7) [eq \f(sin θ,sin3θ-cs3θ)=eq \f(sin θsin2θ+cs2θ,sin3θ-cs3θ)=eq \f(tan3θ+tan θ,tan3θ-1)=eq \f(23+2,23-1)=eq \f(10,7).]


    三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)


    17.(本小题满分10分)已知α是第三象限角,且f(α)=


    eq \f(sin-α-πcs5π-αtan2π-α,cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))tan-π-α).


    (1)化简f(α);


    (2)若tan(π-α)=-2,求f(α)的值.


    [解](1)f(α)=eq \f(sin α·-cs α·-tan α,sin α·-tan α)


    =-cs α.


    (2)由已知得tan α=2,eq \f(sin α,cs α)=2,sin α=2cs α,sin2α=4cs2α,1-cs2α=4cs2α,cs2α=eq \f(1,5).因为α是第三象限角,所以cs α<0,所以cs α=-eq \f(\r(5),5),所以f(α)=-cs α=eq \f(\r(5),5).


    18.(本小题满分12分)已知sin α+3cs α=0,求sin α,cs α的值.


    [解] ∵ sin α=-3cs α.


    又sin2α+cs2α=1,得(-3cs α)2+cs2α=1,


    即10cs2α=1.∴ cs α=±eq \f(\r(10),10).


    又由sin α=-3cs α,可知sin α与cs α异号,


    ∴ α在第二、四象限.


    ① 当α是第二象限角时,sin α=eq \f(3\r(10),10) ,cs α=-eq \f(\r(10),10).


    ② 当α是第四象限角时,sin α=-eq \f(3\r(10),10) ,cs α=eq \f(\r(10),10).


    19.(本小题满分12分)已知f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))+eq \f(3,2),x∈R.


    (1)求函数f(x)的最小正周期和单调递增区间;


    (2)函数f(x)的图像可以由函数y=sin 2x(x∈R)的图像经过怎样的变换得到?


    [解](1)T=eq \f(2π,2)=π,由2kπ-eq \f(π,2)≤2x+eq \f(π,6)≤2kπ+eq \f(π,2),k∈Z,知kπ-eq \f(π,3)≤x≤kπ+eq \f(π,6)(k∈Z).


    所以所求的单调递增区间为eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,3),kπ+\f(π,6)))(k∈Z).


    (2)变换情况如下:





    y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))+eq \f(3,2).


    20.(本小题满分12分)在已知函数f(x)=Asin(ωx+φ),x∈Req \b\lc\(\rc\)(\a\vs4\al\c1(其中A>0,ω>0,0<φ<\f(π,2)))的图像与x轴的交点中,相邻两个交点之间的距离为eq \f(π,2),且图像上一个最低点为Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),-2)).


    (1)求f(x)的解析式;


    (2)当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,12),\f(π,2)))时,求f(x)的值域.


    [解](1)由最低点为Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),-2))得A=2.


    由x轴上相邻两个交点之间的距离为eq \f(π,2),


    得eq \f(T,2)=eq \f(π,2),即T=π,∴ω=eq \f(2π,T)=eq \f(2π,π)=2.


    由点Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),-2))在图像上得2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2×\f(2π,3)+φ))=-2,


    即sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4π,3)+φ))=-1,故eq \f(4π,3)+φ=2kπ-eq \f(π,2)(k∈Z),


    ∴φ=2kπ-eq \f(11π,6)(k∈Z).


    又φ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),∴φ=eq \f(π,6),故f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6))).


    (2)∵x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,12),\f(π,2))),∴2x+eq \f(π,6)∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,3),\f(7π,6))),


    当2x+eq \f(π,6)=eq \f(π,2),即x=eq \f(π,6)时,f(x)取得最大值2;


    当2x+eq \f(π,6)=eq \f(7π,6),即x=eq \f(π,2)时,f(x)取得最小值-1,


    故f(x)的值域为[-1,2].


    21.(本小题满分12分)如图为y=Asin(ωx+φ)的图像的一段.





    (1)求其解析式;


    (2)若将y=Asin(ωx+φ)的图像向左平移eq \f(π,6)个单位长度后得y=f(x),求f(x)的对称轴方程.


    [解](1)由图像知A=eq \r(3),


    以Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),0))为第一个零点,Neq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6),0))为第二个零点.


    列方程组eq \b\lc\{\rc\ (\a\vs4\al\c1(ω·\f(π,3)+φ=0,,ω·\f(5π,6)+φ=π,)) 解得eq \b\lc\{\rc\ (\a\vs4\al\c1(ω=2,,φ=-\f(2π,3).))


    ∴所求解析式为y=eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(2π,3))).


    (2)f(x)=eq \r(3)sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))-\f(2π,3)))


    =eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3))),


    令2x-eq \f(π,3)=eq \f(π,2)+kπ(k∈Z),则x=eq \f(5,12)π+eq \f(kπ,2)(k∈Z),


    ∴f(x)的对称轴方程为x=eq \f(5,12)π+eq \f(kπ,2)(k∈Z).


    22.(本小题满分12分)函数f(x)是定义在[-2π,2π]上的偶函数,当x∈[0,π]时,y=f(x)=cs x;当x∈(π,2π]时,f(x)的图像是斜率为eq \f(2,π),在y轴上截距为-2的直线在相应区间上的部分.


    (1)求f(-2π),feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))的值;


    (2)求f(x)的解析式,并作出图像,写出其单调区间.


    [解](1)当x∈(π,2π]时,y=f(x)=eq \f(2,π)x-2,当x∈[-2π,-π)时,-x∈(π,2π),


    ∴y=f(-x)=-eq \f(2,π)x-2,又f(x)是偶函数,∴当x∈[-2π,-π)时,f(x)=f(-x)=-eq \f(2,π)x-2.


    ∴f(-2π)=f(2π)=2.


    又x∈[0,π]时,y=f(x)=cs x,


    ∴feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))=eq \f(1,2).


    (2)y=f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(2,π)x-2, x∈[-2π,-π,,cs x, x∈[-π,π],,\f(2,π)x-2, x∈π,2π].))





    单调增区间为[-π,0],(π,2π],


    单调减区间为[-2π,-π),[0,π].


    相关试卷

    人教B版高中数学必修第三册章末综合测评+模块综合测评含答案: 这是一份人教B版高中数学必修第三册章末综合测评+模块综合测评含答案,文件包含人教B版高中数学必修第三册模块综合测评1含答案doc、人教B版高中数学必修第三册模块综合测评2含答案doc、人教B版高中数学必修第三册章末综合测评1含答案doc、人教B版高中数学必修第三册章末综合测评2含答案doc等4份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    人教B版高中数学选择性必修第三册章末综合测评+模块综合测评含答案: 这是一份人教B版高中数学选择性必修第三册章末综合测评+模块综合测评含答案,文件包含人教B版高中数学选择性必修第三册模块综合测评2含答案doc、人教B版高中数学选择性必修第三册章末综合测评1数列含答案doc、人教B版高中数学选择性必修第三册模块综合测评1含答案doc、人教B版高中数学选择性必修第三册章末综合测评2导数及其应用含答案doc等4份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    (新)人教B版(2019)必修第三册模块综合测评1(含解析): 这是一份数学必修 第三册全册综合精品课时训练,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新)人教B版(2019)必修第三册章末综合测评1 三角函数(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map