寒假特辑
搜索
      上传资料 赚现金

      人教版2026学年七年级数学上册压轴题专项训练专题03有理数的混合运算的四类综合题型(原卷版+解析)

      • 713.6 KB
      • 2025-10-06 12:59
      • 163
      • 2
      • 专著教育领域引导者
      加入资料篮
      立即下载
      寒假特辑
      人教版2026学年七年级数学上册压轴题专项训练专题03有理数的混合运算的四类综合题型(原卷版+解析)第1页
      1/30
      人教版2026学年七年级数学上册压轴题专项训练专题03有理数的混合运算的四类综合题型(原卷版+解析)第2页
      2/30
      人教版2026学年七年级数学上册压轴题专项训练专题03有理数的混合运算的四类综合题型(原卷版+解析)第3页
      3/30
      还剩27页未读, 继续阅读

      人教版(2024)七年级上册(2024)有理数的乘方课后复习题

      展开

      这是一份人教版(2024)七年级上册(2024)有理数的乘方课后复习题,共30页。试卷主要包含了有理数乘除混合运算,含乘方的有理数的混合运算,有理数的混合运算的实际应用等内容,欢迎下载使用。

      类型一、有理数乘除混合运算
      例1.(24-25七年级上·北京·期中)计算:
      【变式1-1】计算:
      【变式1-2】(24-25七年级上·内蒙古呼伦贝尔·期中)计算:
      【变式1-3】阅读下面的解题过程并解答问题:
      计算:
      解:原式(第一步)
      (第二步)
      (第三步)
      (1)上面解题过程从第______步开始出错,错误的原因是______.
      (2)请写出正确的解答过程.
      类型二、含乘方的有理数的混合运算
      例2.(24-25七年级上·广东湛江·期中)计算:.
      【变式2-1】(24-25七年级上·安徽阜阳·期中)计算:
      【变式2-2】(24-25七年级上·广东惠州·期中)计算:.
      【变式2-3】(24-25七年级下·全国·期中)计算:
      (1); (2).
      类型三、有理数的混合运算中的新定义型问题
      例3.对有理数a、b定义运算如下:.
      (1)计算______;
      (2)求的值.
      【变式3-1】(24-25七年级下·辽宁盘锦·阶段练习)新定义运算:.例.

      (1)的值为;
      (2)的值为.
      【变式3-2】定义新运算:,,a,b是实数,如:,.
      (1)求的值;
      (2)求的值.
      【变式3-3】(24-25七年级上·山西临汾·期中)对于任意有理数和,定义一种新运算“”:,例如:
      (1)求的值;
      (2)求的值;
      (3)计算和的值,并根据计算结果判断这种运算是否满足交换律.
      类型四、有理数的混合运算的实际应用
      例4.(24-25七年级上·四川南充·期中)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富,小王把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负,下表是小王第一周柚子的销售情况:
      (1)求小王第一周销售柚子最多的一天比最少的一天多销售多少千克.
      (2)求小王第一周实际销售柚子的总量是多少千克?
      (3)若小王按8元/千克进行柚子销售,平均运费为2元/千克,则小王第一周销售柚子一共收入多少元?
      【变式4-1】(24-25七年级上·广西河池·期末)为巩固脱贫攻坚成果,助力乡村振兴快速发展.我县所略乡推行“发展茶油产业,加快脱贫的步伐”.某种植户新鲜采摘了20筐茶果,以每筐25千克为标准重量,超过或不足千克数分别用正,负数来表示,记录如下:
      (1)与标准重量比较,20筐茶果总计超过或不足多少千克?
      (2)若该种植户采摘生茶果每千克售价元,则出售这20筐茶果可获得多少元?
      【变式4-2】在佛山的一个以传统手工艺和自然美景著称的小镇上,有一个专门生产竹制品和陶瓷的工艺合作社.这个合作社计划每天生产200件.但由于工艺的复杂性和市场需求的波动,实际每天的生产量与计划量有所差异.下表是某周每天的生产情况(超产记为正,减产记为负):
      (1)由表可知该合作社星期三生产竹制品和陶瓷____________件;
      (2)由表可知该厂本周生产竹制品和陶瓷多少件?
      (3)合作社实行每日计件工资制,每生产一件产品可得60元,若超额完成任务,则超过部分每件奖励15元;少生产一件扣20元,那么合作社成员这一周的工资总额是多少元?
      【变式4-3】自行车厂要生产一批相同型号的自行车,计划每天生产100辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过100辆记为正,不足100辆记为负)
      (1)根据记录可知,前三天共生产了 辆;
      (2)生产量最多的一天比生产量最少的一天多生产了 辆;
      (3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.
      一、单选题
      1.(24-25七年级上·贵州毕节·期中)计算的结果为( )
      A.B.9C.1D.
      2.(24-25七年级上·内蒙古乌海·期中)计算机将信息转换成二进制数处理的,二进制即“逢2进1”,如表示二进制数,将它转换成十进制形式是,那么将二进制转换成十进制形式是( )
      A.23B.22C.18D.31
      3.(24-25七年级上·贵州安顺·期末)现定义一种新的运算:,例如:,请你按以上方法计算的结果是( )
      A.B.5C.1D.-1
      二、填空题
      4.(24-25七年级上·广东广州·期末)计算: .
      5.(24-25七年级上·安徽宿州·期末)计算: .
      6.(24-25七年级上·河南洛阳·期中)定义一种新的运算:,如,则的值是 .
      7.(24-25七年级上·浙江杭州·期末)用“”定义新运算:对于任意有理数a、b,都有.例如:,那么 ; .
      三、解答题
      8.计算:
      (1);
      (2);
      (3).
      9.计算:
      (1)
      (2)
      10.(24-25七年级上·四川绵阳·期中)计算:
      (1);
      (2).
      11.学习情境•过程纠错 下面是小胡同学做过的一道题,请先阅读解题过程,然后回答所提出的问题.
      计算:.
      解:原式 …………第①步
      …………………………………第②步
      (1)上述解题过程中,从第___________步开始出错(填“①”或“②”);
      (2)写出本题的正确解答过程.
      12.已知a,b均为有理数,现我们定义一种新运算,规定.例如:.
      (1)求的值;
      (2)求的值.
      13.(23-24七年级上·甘肃兰州·期中)兰州出租车师傅小郭一天上午驾驶一辆出租车以西关什字为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:)如下:
      (1)将最后一名乘客送到目的地,相对于西关什字出租车的位置在哪里?
      (2)这天上午出租车总共行驶了多少?
      (3)已知出租车每行驶耗油,每升汽油的售价为8.3元.如果不计其他成本,出租车师傅小郭每千米收费2.5元,那么这半天他盈利了还是亏损了?盈利(或亏损)了多少元?
      14.(24-25七年级上·云南红河·期中)【阅读理解】
      材料一:类比“有理数的乘方”的定义,我们规定:求若干个相同的非零有理数的商的运算,叫作除方,如,等.把(记作读作“的括号3次方”;把记作,读作“3的括号4次方”.
      材料二:我们知道除法运算可以转化为乘法运算,例如:.
      (1)仿照上例,将下列除方运算的结果写成幂的形式:
      ①;
      ②;
      (2)求的值.
      15.(24-25七年级上·陕西咸阳·期末)大荔冬枣肉细嫩,果肉乳白色,口感细嫩酥脆,晓芸家新摘了6筐冬枣,以每筐为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录(单位:)如下:
      (1)第1筐冬枣重_____千克.
      (2)这6筐冬枣中,最重的一筐比最轻的一筐重多少千克?
      (3)如果该冬枣以每千克15元的价格售出,这6筐冬枣一共可以卖多少元?
      目录
      TOC \ "1-2" \h \u \l "_Tc9372" 典例详解
      \l "_Tc3733" 类型一、有理数乘除混合运算
      \l "_Tc23661" 类型二、含乘方的有理数的混合运算
      \l "_Tc16456" 类型三、有理数的混合运算中的新定义型问题
      \l "_Tc6784" 类型四、有理数的混合运算的实际应用
      \l "_Tc28847" 压轴专练
      1. 有理数的乘法法则
      (1)两数相乘,同号得正,异号得负,并把绝对值相乘.
      (2)任何数同0相乘,都得0.
      (3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇
      数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.
      倒数:乘积是1的两个有理数互为倒数.
      【注意】:①0没有倒数;②倒数等于它本身的数有1和-1.
      2.有理数除法法则
      ◆除以一个不为0的数,等于乘以这个数的倒数
      ◆两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除.
      【注意】:0除以任何不为0的数,都得0.
      1.有理数的乘方运算
      (1)正数的任何次幂都是正数;
      (2)负数的奇次幂是负数,负数的偶次幂是正数;
      (3)0的任何正整数次幂都是0;
      (4)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.
      2.有理数的混合运算
      (1)先乘方,再乘除,最后加减。
      (2)同级运算,从左到右的顺序进行。
      (3)如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。在进行有理数的运算时,要分两步走:先确定符号,再求值。
      1. 先明确新定义运算的规则,理解符号或表达式的含义,将新运算转化为熟悉的加减乘除运算,注意运算顺序和括号的作用。
      2. 代入具体数值或代数式,按新规则逐步计算,结合有理数混合运算的法则,验证结果是否符合定义,避免混淆新规则与常规运算。
      1.先分析实际问题中的数量关系,用有理数表示相反意义的量(如收入为正、支出为负),再确定运算顺序,列出混合运算式子。
      2.按“先乘方、再乘除、最后加减,有括号先算括号”的法则计算,结合实际意义检验结果合理性,解决如利润、行程等问题。
      星期







      柚子销售超过或不足计划量情况(单位:千克)
      与标准重量的差值(单位:千克)

      0
      1
      筐数
      1
      4
      2
      3
      2
      8
      星期







      增减产量
      星期







      增减(辆)
      第1筐
      第2筐
      第3筐
      第4筐
      第5筐
      第6筐
      专题03 有理数的混合运算的四类综合题型
      类型一、有理数乘除混合运算
      例1.(24-25七年级上·北京·期中)计算:
      【答案】
      【分析】本题考查有理数的乘除混合运算,解题的关键是将带分数化为假分数,再根据有理数乘除法运算法则,从左到右依次进行计算.
      将带分数化为假分数,按照从左到右的顺序进行乘除运算.
      【详解】解:原式

      【变式1-1】计算:
      【答案】2
      【分析】根据有理数乘除的混合运算解答即可.
      本题考查了有理数乘除的混合运算,熟练掌握运算法则是阶梯的关键.
      【详解】解:

      【变式1-2】(24-25七年级上·内蒙古呼伦贝尔·期中)计算:
      【答案】
      【分析】本题考查了有理数的乘除混合运算,熟练掌握有理数的乘除混合运算法则是解题的关键;
      根据有理数的乘除混合运算法则计算即可.
      【详解】解:
      .
      【变式1-3】阅读下面的解题过程并解答问题:
      计算:
      解:原式(第一步)
      (第二步)
      (第三步)
      (1)上面解题过程从第______步开始出错,错误的原因是______.
      (2)请写出正确的解答过程.
      【答案】(1)二,运算顺序不对
      (2)见解析
      【分析】本题考查的是有理数的乘除混合运算;
      (1)根据有理数的乘除混合运算的运算顺序可得答案;
      (2)先计算括号内的运算,再按照从左至右的顺序进行计算即可.
      【详解】(1)解:上面解题过程从第二步开始出错,错误的原因是运算顺序不对;
      (2)解:
      .
      类型二、含乘方的有理数的混合运算
      例2.(24-25七年级上·广东湛江·期中)计算:.
      【答案】
      【分析】本题主要考查有理数的混合运算,包括乘方、乘除、加减的运算顺序,以及符号的处理.先计算乘方然后进行有理数的加减运算即可.
      【详解】解:
      【变式2-1】(24-25七年级上·安徽阜阳·期中)计算:
      【答案】12
      【分析】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.
      先计算乘方,然后计算乘除,最后计算加减.
      【详解】

      【变式2-2】(24-25七年级上·广东惠州·期中)计算:.
      【答案】
      【分析】本题考查了有理数的混合运算,先算乘方和括号,再算乘法,后算加减.
      【详解】解:

      【变式2-3】(24-25七年级下·全国·期中)计算:
      (1); (2).
      【答案】(1)3
      (2)
      【分析】本题考查了有理数的混合运算,熟练掌握运算法则是解此题的关键.
      (1)先计算乘方、绝对值,再计算加减即可;
      (2)先计算乘方,再计算乘除,最后计算加减即可.
      【详解】(1)解:;
      (2)解:.
      类型三、有理数的混合运算中的新定义型问题
      例3.对有理数a、b定义运算如下:.
      (1)计算______;
      (2)求的值.
      【答案】(1)
      (2)9
      【分析】(1)根据定义的运算代入求解即可得出答案;
      (2)先计算中括号里面的,再计算括号外面的即可得出答案.
      本题考查的是有理数的混合运算,解题关键在于根据新定义列出代数式.
      【详解】(1)根据题意得,

      (2)

      【变式3-1】(24-25七年级下·辽宁盘锦·阶段练习)新定义运算:.例.

      (1)的值为;
      (2)的值为.
      【答案】(1);
      (2).
      【分析】本题考查了新定义运算,有理数的乘方运算,掌握相关知识是解题的关键.
      (1)根据新定义运算求解即可;
      (2)根据新定义,先计算得到,再计算即可,
      【详解】(1)解:根据题意可得:;
      (2)解:根据题意可得:

      【变式3-2】定义新运算:,,a,b是实数,如:,.
      (1)求的值;
      (2)求的值.
      【答案】(1)1
      (2)
      【分析】此题是定义新运算题,主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解答此题的关键.
      (1)根据已知条件,把所求算式中的数代入进行计算即可;
      (2)先根据,把a,b表示的数代入求出,再根据,求出答案即可.
      【详解】(1)解:∵,


      (2)解:∵,


      ∵,




      【变式3-3】(24-25七年级上·山西临汾·期中)对于任意有理数和,定义一种新运算“”:,例如:
      (1)求的值;
      (2)求的值;
      (3)计算和的值,并根据计算结果判断这种运算是否满足交换律.
      【答案】(1)3
      (2)
      (3),,不满足
      【分析】本题考查了有理数的加法运算,有理数的乘法运算,乘法运算律.理解运算规则是解题的关键.
      (1)由题意知,,计算求解即可;
      (2)根据,计算求解即可;
      (3)由题意知,,,由,作答即可.
      【详解】(1)解:由题意知,;
      ∴的值为3;
      (2)解:

      ∴的值为;
      (3)解:由题意知,,

      ∵,
      不满足交换律.
      类型四、有理数的混合运算的实际应用
      例4.(24-25七年级上·四川南充·期中)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富,小王把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负,下表是小王第一周柚子的销售情况:
      (1)求小王第一周销售柚子最多的一天比最少的一天多销售多少千克.
      (2)求小王第一周实际销售柚子的总量是多少千克?
      (3)若小王按8元/千克进行柚子销售,平均运费为2元/千克,则小王第一周销售柚子一共收入多少元?
      【答案】(1)小王第一周销售柚子最多的一天比最少的一天多销售千克
      (2)小王第一周实际销售柚子的总量是千克
      (3)小王第一周销售柚子一共收入元
      【分析】本题考查了正负数的实际应用,涉及了有理数的混合运算,注意计算的准确性.
      (1)用周六柚子的销量减去周五柚子的销量即可;
      (2)计算即可求解;
      (3)收入=(售价-运费)×总量,据此即可求解.
      【详解】(1)解:周六销售柚子最多,销售量为(千克),
      最少的是周五,销售量为(千克),
      所以最多的一天比最少的一天多销售(千克)
      答:小王第一周销售柚子最多的一天比最少的一天多销售20千克;
      (2)解:(千克),
      答:小王第一周实际销售柚子的总量是千克;
      (3)解:(元),
      答:小王第一周销售柚子一共收入元.
      【变式4-1】(24-25七年级上·广西河池·期末)为巩固脱贫攻坚成果,助力乡村振兴快速发展.我县所略乡推行“发展茶油产业,加快脱贫的步伐”.某种植户新鲜采摘了20筐茶果,以每筐25千克为标准重量,超过或不足千克数分别用正,负数来表示,记录如下:
      (1)与标准重量比较,20筐茶果总计超过或不足多少千克?
      (2)若该种植户采摘生茶果每千克售价元,则出售这20筐茶果可获得多少元?
      【答案】(1)20筐茶果的总质量比标准质量超过8千克
      (2)出售这20筐茶果可获得元
      【分析】本题主要考查了正负数的实际应用,有理数四则混合计算的实际应用,熟知正负数的实际意义是解题的关键.
      (1)根据表格中的数据求出这20筐茶果的重量,若结果为正,则超过标准质量,若为负,则不足,若为0,这等于标准质量,据此求解即可;
      (2)用每千克的售价乘以茶果总质量即可得到答案.
      【详解】(1)解:由题意得:千克,
      答:20筐茶果的总质量比标准质量超过8千克;
      (2)解:由题意得:(元)
      答:出售这20筐茶果可获得元.
      【变式4-2】在佛山的一个以传统手工艺和自然美景著称的小镇上,有一个专门生产竹制品和陶瓷的工艺合作社.这个合作社计划每天生产200件.但由于工艺的复杂性和市场需求的波动,实际每天的生产量与计划量有所差异.下表是某周每天的生产情况(超产记为正,减产记为负):
      (1)由表可知该合作社星期三生产竹制品和陶瓷____________件;
      (2)由表可知该厂本周生产竹制品和陶瓷多少件?
      (3)合作社实行每日计件工资制,每生产一件产品可得60元,若超额完成任务,则超过部分每件奖励15元;少生产一件扣20元,那么合作社成员这一周的工资总额是多少元?
      【答案】(1)195
      (2)1408件
      (3)84460元
      【分析】本题考查了正数和负数、有理数的混合运算,结合已知条件列得正确的算式是解题的关键.
      (1)根据正数和负数的实际意义列式计算即可;
      (2)根据正数和负数的实际意义列式计算即可;
      (3)根据产品数量算出生产产品的工资,再加上超额部分的奖励,减去少生产部分的总额,即可求解.
      【详解】(1)解:(件),
      即该合作社星期三生产竹制品和陶瓷件,
      故答案为:;
      (2)解:(件),
      答:该厂本周生产竹制品和陶瓷件;
      (3)解:(元),
      超过的部分奖励总额为:(元),
      扣款总额为:(元),
      ∴(元),
      答:合作社成员这一周的工资总额是元.
      【变式4-3】自行车厂要生产一批相同型号的自行车,计划每天生产100辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过100辆记为正,不足100辆记为负)
      (1)根据记录可知,前三天共生产了 辆;
      (2)生产量最多的一天比生产量最少的一天多生产了 辆;
      (3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.
      【答案】(1);
      (2);
      (3)元.
      【分析】本题主要考查了有理数混合计算的实际应用,有理数减法的实际应用,正负数的实际应用,正确理解题意列出对应的算式是解题的关键。
      (1)根据把表格中前三天的生产记录相加,再加上计划三天的生产量可以计算出前三天共生产了多少辆自行车;
      (2)根据表格中的数据,可以计算出生产量最多的一天比生产量最少的一天多生产了多少辆自行车;
      (3)根据题意先计算出总生产量,再计算出奖励和扣除的费用以及生产费用即可得到答案.
      【详解】(1)解:辆,
      ∴前三天共生产了辆,
      故答案为:;
      (2)解:由表格可得,生产量最多的一天比生产量最少的一天多生产了辆,
      故答案为:;
      (3)解:,


      (元),
      答:工人这一周的工资总额是元.
      一、单选题
      1.(24-25七年级上·贵州毕节·期中)计算的结果为( )
      A.B.9C.1D.
      【答案】D
      【分析】本题主要考查了有理数乘除混合运算.根据有理数乘除混合运算法则计算即可求解.
      【详解】解:

      故选:D.
      2.(24-25七年级上·内蒙古乌海·期中)计算机将信息转换成二进制数处理的,二进制即“逢2进1”,如表示二进制数,将它转换成十进制形式是,那么将二进制转换成十进制形式是( )
      A.23B.22C.18D.31
      【答案】A
      【分析】本题考查了有理数的混合运算,根据题中二进制数化为十进制数的方法计算即可.
      【详解】解:根据题意得:,
      故选:A.
      3.(24-25七年级上·贵州安顺·期末)现定义一种新的运算:,例如:,请你按以上方法计算的结果是( )
      A.B.5C.1D.-1
      【答案】A
      【分析】本题考查有理数的混合运算,根据新运算的法则,列出算式进行计算即可.
      【详解】解:由题意,得:;
      故选A.
      二、填空题
      4.(24-25七年级上·广东广州·期末)计算: .
      【答案】
      【分析】本题考查有理数的乘除混合运算,熟练掌握运算法则是解答本题的关键.
      先把除法转化为乘法,然后根据乘法法则计算即可.
      【详解】解:

      故答案为:.
      5.(24-25七年级上·安徽宿州·期末)计算: .
      【答案】
      【分析】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.
      先计算乘方,然后计算乘除,最后计算加减.
      【详解】

      故答案为:.
      6.(24-25七年级上·河南洛阳·期中)定义一种新的运算:,如,则的值是 .
      【答案】/0.5
      【分析】根据,可以求得所求式子的值.
      本题考查有理数的混合运算、新定义,熟练掌握运算法则是解答本题的关键.
      【详解】,

      故答案为:.
      7.(24-25七年级上·浙江杭州·期末)用“”定义新运算:对于任意有理数a、b,都有.例如:,那么 ; .
      【答案】 16
      【分析】本题考查有理数的混合运算,理解新定义运算规则,掌握有理数混合运算的运算顺序和计算法则是解题关键.根据新定义运算法则进行逐个列式计算,即可作答.
      【详解】解:∵,
      ∴,


      故答案为:.
      三、解答题
      8.计算:
      (1);
      (2);
      (3).
      【答案】(1)
      (2)
      (3)
      【分析】本题主要考查了有理数乘除混合运算,掌握有理数乘除混合运算法则成为解题的关键.
      (1)先化乘为除,然后按有理数乘法运算法则计算即可;
      (2)先化乘为除,然后按有理数乘法运算法则计算即可;
      (3)先化乘为除,然后按有理数乘法运算法则计算即可.
      【详解】(1)解:

      (2)解:

      (3)解:

      9.计算:
      (1)
      (2)
      【答案】(1)
      (2)
      【分析】本题主要考查了含乘方的有理数混合计算,解题关键是注意运算顺序.
      (1)先计算乘方和绝对值,再计算乘除法,最后计算加减法即可得到答案;
      (2)按照先计算乘方,再计算乘法,最后计算加法,有括号先计算括号的运算顺序求解即可.
      【详解】(1)解:

      (2)

      10.(24-25七年级上·四川绵阳·期中)计算:
      (1);
      (2).
      【答案】(1)
      (2)
      【分析】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.
      (1)先乘方、化简绝对值、括号内计算,再计算乘法,再计算减法即可;
      (2)先进行括号内计算,再计算乘除即可.
      【详解】(1)解:

      (2)解:

      11.学习情境•过程纠错 下面是小胡同学做过的一道题,请先阅读解题过程,然后回答所提出的问题.
      计算:.
      解:原式 …………第①步
      …………………………………第②步
      (1)上述解题过程中,从第___________步开始出错(填“①”或“②”);
      (2)写出本题的正确解答过程.
      【答案】(1)①
      (2)见解析
      【分析】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则及运算顺序.
      (1)检查解题过程发现第①步有误,
      (2)根据从左到右的顺序写出正确的解法即可.
      【详解】(1)解:第①步出错,运算的顺序有误;
      故答案是:①;
      (2)解:.
      12.已知a,b均为有理数,现我们定义一种新运算,规定.例如:.
      (1)求的值;
      (2)求的值.
      【答案】(1)
      (2)
      【分析】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
      (1)根据,可以求得所求式子的值;
      (2)根据,可以求得所求式子的值.
      【详解】(1)解:,

      (2)解:由题意可得,

      13.(23-24七年级上·甘肃兰州·期中)兰州出租车师傅小郭一天上午驾驶一辆出租车以西关什字为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:)如下:
      (1)将最后一名乘客送到目的地,相对于西关什字出租车的位置在哪里?
      (2)这天上午出租车总共行驶了多少?
      (3)已知出租车每行驶耗油,每升汽油的售价为8.3元.如果不计其他成本,出租车师傅小郭每千米收费2.5元,那么这半天他盈利了还是亏损了?盈利(或亏损)了多少元?
      【答案】(1)将最后一名乘客送到目的地回到了西关什字处;
      (2);
      (3)盈利,元
      【分析】本题主要考查了有理数的加减乘除混合运算,注意正负数的意义,熟练掌握运算法则是解题的关键.
      (1)根据有理数的加法运算,看其结果的正负即可判断其位置;
      (2)根据绝对值的定义列式计算即可;
      (3)根据题意列式计算即可.
      【详解】(1)解解:,
      所以将最后一名乘客送到目的地,出租车回到了西关什字处,
      答:将最后一名乘客送到目的地回到了西关什字处.
      (2),
      答:这天上午出租车总共行驶了 千米.
      (3)
      答:那么这半天出租车盈利了元.
      14.(24-25七年级上·云南红河·期中)【阅读理解】
      材料一:类比“有理数的乘方”的定义,我们规定:求若干个相同的非零有理数的商的运算,叫作除方,如,等.把(记作读作“的括号3次方”;把记作,读作“3的括号4次方”.
      材料二:我们知道除法运算可以转化为乘法运算,例如:.
      (1)仿照上例,将下列除方运算的结果写成幂的形式:
      ①;
      ②;
      (2)求的值.
      【答案】(1)①;②
      (2)
      【分析】本题考查有理数乘除运算法则及对有理数乘方运算的理解,理解新定义内容,掌握有理数乘除法和有理数乘方的运算法则是解题关键.
      (1)根据除方的概念的运算法则进行计算;
      (2)根据除方内容结合有理数的乘除法运算法则进行计算即可.
      【详解】(1)解:①



      (2)解:

      15.(24-25七年级上·陕西咸阳·期末)大荔冬枣肉细嫩,果肉乳白色,口感细嫩酥脆,晓芸家新摘了6筐冬枣,以每筐为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录(单位:)如下:
      (1)第1筐冬枣重_____千克.
      (2)这6筐冬枣中,最重的一筐比最轻的一筐重多少千克?
      (3)如果该冬枣以每千克15元的价格售出,这6筐冬枣一共可以卖多少元?
      【答案】(1)
      (2)千克
      (3)1860元
      【分析】(1)根据有理数减法,列式计算即可.
      (2)根据,得到,解答即可.
      (3)先计算总质量:,解答即可.
      【详解】(1)解:根据题意,得第1筐冬枣重(千克),
      故答案为:.
      (2)解:根据,
      得到(千克),
      答:最重的一筐比最轻的一筐重千克.
      (3)解:冬枣的总质量为:.
      故卖出的总钱数为(元).
      【点睛】本题考查了正负数的应用,有理数的大小比较,有理数的加、减、乘的混合运算,加减混合运算,熟练掌握运算法则是解题的关键.
      目录
      TOC \ "1-2" \h \u \l "_Tc9372" 典例详解
      \l "_Tc3733" 类型一、有理数乘除混合运算
      \l "_Tc23661" 类型二、含乘方的有理数的混合运算
      \l "_Tc16456" 类型三、有理数的混合运算中的新定义型问题
      \l "_Tc6784" 类型四、有理数的混合运算的实际应用
      \l "_Tc28847" 压轴专练
      1. 有理数的乘法法则
      (1)两数相乘,同号得正,异号得负,并把绝对值相乘.
      (2)任何数同0相乘,都得0.
      (3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇
      数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.
      倒数:乘积是1的两个有理数互为倒数.
      【注意】:①0没有倒数;②倒数等于它本身的数有1和-1.
      2.有理数除法法则
      ◆除以一个不为0的数,等于乘以这个数的倒数
      ◆两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除.
      【注意】:0除以任何不为0的数,都得0.
      1.有理数的乘方运算
      (1)正数的任何次幂都是正数;
      (2)负数的奇次幂是负数,负数的偶次幂是正数;
      (3)0的任何正整数次幂都是0;
      (4)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.
      2.有理数的混合运算
      (1)先乘方,再乘除,最后加减。
      (2)同级运算,从左到右的顺序进行。
      (3)如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。在进行有理数的运算时,要分两步走:先确定符号,再求值。
      1. 先明确新定义运算的规则,理解符号或表达式的含义,将新运算转化为熟悉的加减乘除运算,注意运算顺序和括号的作用。
      2. 代入具体数值或代数式,按新规则逐步计算,结合有理数混合运算的法则,验证结果是否符合定义,避免混淆新规则与常规运算。
      1.先分析实际问题中的数量关系,用有理数表示相反意义的量(如收入为正、支出为负),再确定运算顺序,列出混合运算式子。
      2.按“先乘方、再乘除、最后加减,有括号先算括号”的法则计算,结合实际意义检验结果合理性,解决如利润、行程等问题。
      星期







      柚子销售超过或不足计划量情况(单位:千克)
      与标准重量的差值(单位:千克)

      0
      1
      筐数
      1
      4
      2
      3
      2
      8
      星期







      增减产量
      星期







      增减(辆)
      第1筐
      第2筐
      第3筐
      第4筐
      第5筐
      第6筐

      相关试卷

      人教版2026学年八年级数学上册压轴题专项训练专题09幂的运算的四类综合题型(原卷版+解析):

      这是一份人教版2026学年八年级数学上册压轴题专项训练专题09幂的运算的四类综合题型(原卷版+解析),共33页。试卷主要包含了幂的混合运算,逆用幂的相关公式求值,利用幂的乘方比较大小,与幂的运算有关的新定义型问题等内容,欢迎下载使用。

      人教版2026学年八年级数学上册压轴题专项训练专题07巧构等腰三角形的四类综合题型(原卷版+解析):

      这是一份人教版2026学年八年级数学上册压轴题专项训练专题07巧构等腰三角形的四类综合题型(原卷版+解析),共49页。试卷主要包含了过腰或底作平行线构造等腰三角形,利用倍角关系构造新等腰三角形等内容,欢迎下载使用。

      人教版2026学年八年级数学上册压轴题专项训练专题01与三角形有关的线段与角的四类综合题型(原卷版+解析):

      这是一份人教版2026学年八年级数学上册压轴题专项训练专题01与三角形有关的线段与角的四类综合题型(原卷版+解析),共59页。试卷主要包含了利用三角形的三边关系化简,与三角形的高线,三角形折叠中的角度问题,与三角形的内外角有关的问题等内容,欢迎下载使用。

      资料下载及使用帮助
      版权申诉
      • 1.电子资料成功下载后不支持退换,如发现资料有内容错误问题请联系客服,如若属实,我们会补偿您的损失
      • 2.压缩包下载后请先用软件解压,再使用对应软件打开;软件版本较低时请及时更新
      • 3.资料下载成功后可在60天以内免费重复下载
      版权申诉
      若您为此资料的原创作者,认为该资料内容侵犯了您的知识产权,请扫码添加我们的相关工作人员,我们尽可能的保护您的合法权益。
      入驻教习网,可获得资源免费推广曝光,还可获得多重现金奖励,申请 精品资源制作, 工作室入驻。
      版权申诉二维码
      初中数学人教版(2024)七年级上册(2024)电子课本 新教材

      2.3 有理数的乘方

      版本: 人教版(2024)

      年级: 七年级上册(2024)

      切换课文
      • 同课精品
      • 所属专辑9份
      • 课件
      • 教案
      • 试卷
      • 学案
      • 更多
      欢迎来到教习网
      • 900万优选资源,让备课更轻松
      • 600万优选试题,支持自由组卷
      • 高质量可编辑,日均更新2000+
      • 百万教师选择,专业更值得信赖
      微信扫码注册
      微信扫码注册
      qrcode
      二维码已过期
      刷新

      微信扫码,快速注册

      手机号注册
      手机号码

      手机号格式错误

      手机验证码 获取验证码 获取验证码

      手机验证码已经成功发送,5分钟内有效

      设置密码

      6-20个字符,数字、字母或符号

      注册即视为同意教习网「注册协议」「隐私条款」
      QQ注册
      手机号注册
      微信注册

      注册成功

      返回
      顶部
      初中月考 初中寒假 中考一轮 精选专题 小学寒假 教师福利
      添加客服微信 获取1对1服务
      微信扫描添加客服
      Baidu
      map