初中人教版(2024)16.1 二次根式课前预习课件ppt
展开
这是一份初中人教版(2024)16.1 二次根式课前预习课件ppt,共22页。PPT课件主要包含了①根指数都为2,②被开方数为非负数,是否含有二次根式,不是二次根式,被开方数是否为非负数,是二次根式,二次根式无意义,字母表示,被开方数为非负数,被开方数为负数等内容,欢迎下载使用。
目录/CONTENTS
1.理解二次根式的概念.2.掌握二次根式有意义的条件,会求使二次根式有意义时字母的取值范围.(重点)3.会利用二次根式的非负性解决相关问题.(难点)
问题1 什么叫做平方根?
问题2 什么叫做算术平方根?
问题3 什么数有算术平方根?
我们知道,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.
思考 用带根号的式子填空,这些结果有什么特点?
(1)如图的图片为正方形,若面积为2m2,则边长为_____m;若面积为S m2,则边长为_____m.
(2)如图的图片为长方形,若长是宽的2倍,面积为6m2,则它的宽为_____m.
知识点一 二次根式的概念
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t2,如果用含有h的式子表示t,那么t为_____.
问题1 这些式子分别表示什么意义?
问题2 这些式子有什么共同特征?
注意:a可以是数,也可以是一个含有字母的式子,但前提是被开方数a必须大于或等于0.
注意:识别二次根式的方法
例1 下列各式中,哪些是二次根式?哪些不是?
解:(1)(4)(6)均是二次根式,其中a2+1属于“非负数+正数”的形式一定大于零.(2)(3)(5)(7)均不是二次根式.
例2 (1)下列式子是二次根式的是( C )
(2)下列各式一定属于二次根式的是( )
(3)下列一定是二次根式的是( D )
知识点2 二次根式有意义的条件(被开方数≥0)
被开方数是多项式时,需要对组成多项式的项进行恰当分组,凑成含完全平方的形式,再进行分析讨论.
例2 要使下列式子在实数范围内有意义,求x的取值范围。
例3 当a是怎样的实数时,下列各式在实数范围内有意义?
例4 要使下列式子在实数范围内有意义,求x的取值范围.
1.下列各式是二次根式的是( )
相关课件
这是一份2021学年16.1 二次根式备课课件ppt,共18页。PPT课件主要包含了下球体,双重非负性,拓展延伸,硕果累累,作业设计,玩游戏砸金蛋,-1a≤3等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册16.1 二次根式评课课件ppt,共13页。PPT课件主要包含了被开方数a≥0,根指数为2,二次根式,是否含二次根号,被开方数是不是非负数,不是二次根式等内容,欢迎下载使用。
这是一份人教版八年级下册16.1 二次根式教课内容课件ppt,共15页。PPT课件主要包含了-1没有算术平方根,解析二次根式定义等内容,欢迎下载使用。