终身会员
搜索
    上传资料 赚现金

    专题2.4 全等三角形经典模型一线三等角模型(四大类型)(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题2.4 全等三角形经典模型一线三等角模型(四大类型)(原卷版).docx
    • 解析
      专题2.4 全等三角形经典模型一线三等角模型(四大类型)(解析版).docx
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(原卷版)第1页
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(原卷版)第2页
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(原卷版)第3页
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(解析版)第1页
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(解析版)第2页
    专题2.4  全等三角形经典模型一线三等角模型(四大类型)(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版12.2 三角形全等的判定同步测试题

    展开

    这是一份初中人教版12.2 三角形全等的判定同步测试题,文件包含专题24全等三角形经典模型一线三等角模型四大类型原卷版docx、专题24全等三角形经典模型一线三等角模型四大类型解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。


    【题型一:标准“K”型图】
    【题型二:做辅助线构造“K”型图】
    【题型三:“K”型图与平面直角坐标综合】
    【题型四:特殊“K”型图】
    【方法技巧】
    模型一 一线三垂直全等模型
    如图一,∠D=∠BCA=∠E=90°,BC=AC。 结论:Rt△BDC≌Rt△CEA
    模型二 一线三等角全等模型
    如图二,∠D=∠BCA=∠E,BC=AC。 结论:△BEC≌△CDA

    图一 图二
    应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;
    ②与函数综合应用中有利于点的坐标的求解
    【类型一:标准“K”型图】
    【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
    (1)当直线MN绕点C旋转到图(1)的位置时,
    求证:①△ADC≌△CEB;
    ②DE=AD+BE;
    (2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;
    (3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.
    【变式1-1】(2023春•城阳区期末)如图,在四边形ABCD中,AB=AD,AB⊥AD,AC⊥DC.过点B作BE⊥CA,垂足为点E.若CD=2,CE=6,则四边形ABCD的面积是 .
    【变式1-2】(2022秋•南陵县期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE
    = cm.
    【变式1-3】(高阳县校级期中)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,则△ABC的面积是 .
    【变式1-4】(2023春•大竹县校级期末)如图,在△ABC中,AB=AC,BC,AB边上的高AD,CE相交于点F,且AE=CE.
    (1)求证:△AEF≌△CEB;
    (2)若AF=12,求CD的长.
    【变式1-5】(2023春•紫金县期末)为了测量楼AB的高度,在旗杆CD与楼AB之间选定一点P,测得旗杆顶C的视线PC与地面的夹角∠DPC=17°,楼顶A的视线PA与地面的夹角∠APB=73°,点P到楼底的距离BP与旗杆CD的高度均为8m,旗杆CD与楼AB之间的距离DB为33m,求楼AB的高度.
    【变式1-6】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.
    (1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;
    (2)规律探究:
    (Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;
    (Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;
    (3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.
    【类型二:做辅助线构造“K”型图】
    【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.
    (1)若∠CAE=20°,求∠CBE的度数;
    (2)求证:∠BEC=135°;
    (3)若AE=a,BE=b,CE=c.则△ABC的面积为 .(用含a,b,c的式子表示)
    【变式2-1】(2022秋•香坊区期末)如图,等边△ABC中,CH⊥AB于点H,点D、E分别在边AB、BC上,连接DE,点F在CH上,连接EF,若DE=EF,∠DEF=60°,BE=2,CE=8,则DH= .
    【变式2-2】(2023春•平阴县期末)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,∠BDA=∠AEC=∠BAC.
    (1)如图①,若AB⊥AC,则BD与AE的数量关系为 ,BD,CE与DE的数量关系为 .
    (2)如图②,当AB不垂直于AC时,(1)中的结论是否成立?请说明理由.
    (3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,DE=10cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t与x的值;若不存在,请说明理由.
    【变式2-3】已知Rt△ABC和Rt△ADE,AB=AC,AD=AE.连接BD、CE,过点A作AH⊥CE于点H,反向延长线段AH交BD于点F.
    (1)如图1,当AB=AD时
    ①请直接写出BF与DF的数量关系:BF DF(填“>”、“<”、“=”)
    ②求证:CE=2AF
    (2)如图2,当AB≠AD时,上述①②结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    【变式2-4】直线l经过点A,△ABC在直线l上方,AB=AC.
    (1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;
    (2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;
    (3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
    【变式2-5】问题情境:数学活动课上,王老师出示了一个问题:
    如图1.△ABC是等边三角形,点D在BC边上,∠ADE=60°,DE与∠ACB的外角平分线交于点E,求证:∠BAD=∠CDE.
    独立思考:(1)请解答王老师提出的问题.
    实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.
    “如图2,过E作EF⊥AC于F,探究线段AF,AC,CD之间的数量关系,并说明理由.“
    问题解决:(3)数学活动小组同学改变点D的位置,提出下面问题,请你解答.
    “如图3,△ABC是等边三角形,点D在CB延长线上,∠ADE=60°,DE与∠ACB的外角平分线交于点E,过E作EF⊥AC,交AC延长线于F,探究线段AF,AC,CD之间的数量关系,并说明理由.”
    【类型三:“K”型图与平面直角坐标综合】
    【典例3】(2022秋•葫芦岛期末)在平面直角坐标系xOy中,△ABC为等腰直角三角形,∠ACB=90°,点A(0,5),点C(﹣2,0),点B在第四象限.
    (1)如图1,求点B的坐标;
    (2)如图2,若AB交x轴于点D,BC交y轴于点M,N是BC上一点,且BN=CM,连接DN,求证CD+DN=AM;
    (3)如图3,若点A不动,点C在x轴的负半轴上运动时,分别以AC,OC为直角边在第二、第三象限作等腰直角△ACE与等腰直角△OCF,其中∠ACE=∠OCF=90°,连接EF交x轴于P点,问当点C在x轴的负半轴上移动时,CP的长度是否变化?若变化,请说明理由,若不变化,请求出其长度.
    【变式3-1】如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是( )
    A.(3,4)B.(4,3)C.(4,7)D.(3,7)
    【变式3-2】问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,请直接写出BD、CE、DE的数量关系.
    拓展延伸:(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC请写出DE、BD、CE三条线段的数量关系,并说明理由.
    实际应用:(3)如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求B点的坐标.
    【变式3-3】(1)如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于点D,BE⊥DE于点E,求证:△ADC≌△CEB;
    (2)如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于点D,BE⊥CE于点E,AD=2.5cm,DE=1.7cm,求BE的长;
    (3)如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求点B坐标.
    【变式3-4】在直角坐标平面内,点A(3,0),点B是第二象限内任意一点(如图所示).线段AB绕点A旋转90°后的图形为AC,连接BC.
    (1)当线段AB绕点A顺时针旋转时,
    ①如果点B的坐标为(﹣1,2),过点B作BH⊥OA,垂足为点H,直接写出线段AH的长;
    ②如果点B的横坐标为a,且BC∥OA,求点B的纵坐标;(用含a的代数式表示)
    (2)设点B的坐标为(m,n),直接写出点C的坐标.(用含m、n的代数式表示)
    【变式3-5】(2023春•红安县期末)【建立模型】如图①,等腰直角三角形△ABC的直角顶点B在线段EF上,过点A作AE⊥EF于点E,过点C作CF⊥EF于点F,可以得到结论:△ABE≌△BCF.
    【运用模型】请利用这一结论解决下列问题:
    (1)如图①,请证明△ABE≌△BCF;
    (2)如图②,在平面直角坐标系中,A(1,0),C(﹣1,4),过点A作AB⊥AC,使AB=AC,请直接写出点B的坐标.
    (3)如图③,在平面直角坐标系中,点A的坐标为(﹣2,6),点B的坐标为(6,2),第一象限内是否存在一点P,使△ABP为等腰直角三角形?如果存在,请求出点P的坐标.
    【变式3-6】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.
    (1)如图一,若点B坐标为(0,﹣3),连接AC、OD.
    ①求证:AC=OD;
    ②求D点坐标.
    (2)如图二,连接CD,与y轴交于点E,试求BE长度.
    【类型四:特殊“K”型图】
    【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;
    (2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;
    (3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.
    【变式4-1】如图,△ABC为等边三角形,点D为BC边上一点,先将三角板60°角的顶点与D点重合,平放三角板,再绕点D转动三角板,三角板60°角的两边分别与边AB、AC交于点E、点F,当DE=DF时,如图(2)所示.求证:△BDE≌△CFD.
    【变式4-2】如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.
    (1)求证:△ABD≌△DCE;
    (2)若BD=3,CD=5,求AE的长.
    【变式4-3】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC
    (1)如图①,若AB⊥AC,则BD与AE的数量关系为 ,CE与AD的数量关系为 ;
    (2)如图②,判断并说明线段BD,CE与 DE的数量关系;
    (3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.

    相关试卷

    人教版八年级上册12.2 三角形全等的判定随堂练习题:

    这是一份人教版八年级上册12.2 三角形全等的判定随堂练习题,文件包含专题25全等三角形经典模型“手拉手”模型四大类型原卷版docx、专题25全等三角形经典模型“手拉手”模型四大类型解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线课时训练:

    这是一份初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线课时训练,文件包含专题54平行线中的四大经典模型人教版原卷版docx、专题54平行线中的四大经典模型人教版解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    最新中考数学压轴大题之经典模型 专题04 一线三等角模型-【压轴必刷】:

    这是一份最新中考数学压轴大题之经典模型 专题04 一线三等角模型-【压轴必刷】,文件包含专题4一线三等角模型-压轴必刷2023年中考数学压轴大题之经典模型培优案全国通用原卷版docx、专题4一线三等角模型-压轴必刷2023年中考数学压轴大题之经典模型培优案全国通用解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.4 全等三角形经典模型一线三等角模型(四大类型)(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map