|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题5.4 平行线中的四大经典模型(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题5.4 平行线中的四大经典模型(人教版)(原卷版).docx
    • 解析
      专题5.4 平行线中的四大经典模型(人教版)(解析版).docx
    专题5.4 平行线中的四大经典模型(原卷版+解析版)01
    专题5.4 平行线中的四大经典模型(原卷版+解析版)02
    专题5.4 平行线中的四大经典模型(原卷版+解析版)03
    专题5.4 平行线中的四大经典模型(原卷版+解析版)01
    专题5.4 平行线中的四大经典模型(原卷版+解析版)02
    专题5.4 平行线中的四大经典模型(原卷版+解析版)03
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线课时训练

    展开
    这是一份初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线课时训练,文件包含专题54平行线中的四大经典模型人教版原卷版docx、专题54平行线中的四大经典模型人教版解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    【模型1 “猪蹄”型(含锯齿型)】
    1.(2023下·湖北武汉·七年级统考期末)如图,AB∥CD,EF平分∠BED,∠DEF+∠D=66°,∠B−∠D=28°,则∠BED= .
    2.(2023上·辽宁鞍山·七年级统考期中)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=n°,则∠BED的度数为 .(用含n的式子表示)
    3.(2023下·广东河源·七年级河源市第二中学校考期中)已知直线l1∥l2, A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.
    (1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
    (2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)
    4.(2023下·山东聊城·七年级统考阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.
    (1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;
    (2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.
    5.(2023下·福建莆田·七年级莆田第二十五中学校考阶段练习)如图,AB//CD,点E在直线AB,CD内部,且AE⊥CE.
    (1)如图1,连接AC,若AE平分∠BAC,求证:CE平分∠ACD;
    (2)如图2,点M在线段AE上,
    ①若∠MCE=∠ECD,当直角顶点E移动时,∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
    ②若∠MCE=1n∠ECD(n为正整数),当直角顶点E移动时,∠BAE与∠MCD是否存在确定的数量关系?并说明理由.
    6.(2023·全国·七年级专题练习)(1)如图1,已知AB//CD,∠ABF=∠DCE,求证:∠BFE=∠FEC
    (2)如图2,已知AB//CD,∠EAF=14∠EAB,∠ECF=14∠ECD,求证:∠AFC=34∠AEC
    7.(2023下·湖北武汉·七年级统考期中)如图1,已知AB∥CD,∠B=30°,∠D=120°;
    (1)若∠E=60°,则∠F= ;
    (2)请探索∠E与∠F之间满足的数量关系?说明理由;
    (3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
    8.(2023下·浙江绍兴·七年级统考期末)问题情境:如图1,已知AB∥CD,∠APC=108°.求∠PAB+∠PCD的度数.

    经过思考,小敏的思路是:如图2,过P作PE∥AB,根据平行线有关性质,可得∠PAB+∠PCD=360°−∠APC=252°.
    问题迁移:如图3,AD∥BC,点P在射线OM上运动, ∠ADP=∠α,∠BCP=∠β.
    (1)当点P在A、B两点之间运动时, ∠CPD、∠α、∠β之间有何数量关系?请说明理由.
    (2)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.
    (3)问题拓展:如图4,MA1∥NAn,A1−B1−A2−⋯−Bn−1−An是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为 .
    9.(2023下·重庆九龙坡·七年级统考期末)已知,AB∥CD.点M在AB上,点N在CD上.
    (1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
    如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
    (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
    (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
    10.(2023下·辽宁大连·七年级统考期中)如图,AB//CD,点O在直线CD上,点P在直线AB和CD之间,∠ABP=∠PDQ=α,PD平分∠BPQ.
    (1)求∠BPD的度数(用含α的式子表示);
    (2)过点D作DE//PQ交PB的延长线于点E,作∠DEP的平分线EF交PD于点F,请在备用图中补全图形,猜想EF与PD的位置关系,并证明;
    (3)将(2)中的“作∠DEP的平分线EF交PD于点F”改为“作射线EF将∠DEP分为1:3两个部分,交PD于点F”,其余条件不变,连接EQ,若EQ恰好平分∠PQD,请直接写出∠FEQ=__________(用含α的式子表示).
    【模型2 “铅笔”型】
    、1.(2012下·广东茂名·七年级统考期中)如图,AB∥ED,∠B+∠C+∠D=( )

    A.180°B.360°C.540°D.270°
    2.(2012·江苏常州·七年级统考期中)一大门的栏杆如图所示,BA垂直地面AE于点A,CD平行于地面AE,则∠ABC+∠BCD= .
    3.(2023下·陕西西安·七年级西安市第八十三中学校联考期中)如图1所示的是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2所示的是手动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠DEF=130°,则∠AGC的度数是 .
    4.(2023下·广东东莞·七年级东莞市长安实验中学校考期中)如图,已知AB∥CD.
    (1)如图1所示,∠1+∠2= ;
    (2)如图2所示,∠1+∠2+∠3= ;并写出求解过程.
    (3)如图3所示,∠1+∠2+∠3+∠4= ;
    (4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n= .
    5.(2023下·江苏淮安·七年级统考期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
    思路点拨:
    小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;
    小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC的度数;
    小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.
    问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为 °;
    问题迁移:
    (1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
    (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
    6.(2023下·内蒙古·七年级校考期中)综合与探究:
    (1)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.
    小明想到一种方法,但是没有解答完:
    如图2,过P作PE∥AB,∴∠APE+∠PAB=180°.
    ∴∠APE=180°−∠PAB=180°−130°=50°.
    ∵AB∥CD.∴PE∥CD.
    …………
    请你帮助小明完成剩余的解答.
    (2)问题探究:请你依据小明的思路,解答下面的问题:
    如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.当点P在A,B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.
    7.(2023下·天津滨海新·七年级统考期末)如图1,四边形MNBD为一张长方形纸片.

    (1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=__________°.
    (2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=__________°.
    (3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=___________°.
    (4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出n+1个角,那么这n+1个角的和是____________°.
    8.(2023下·浙江·七年级期末)已知AB//CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P.
    (1)如图1所示时,试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明理由.
    (2)除了(1)的结论外,试问∠AEP,∠EPF,∠PFC还可能满足怎样的数量关系?请画图并证明
    (3)当∠EPF满足0°<∠EPF<180°,且QE,QF分别平分∠PEB和∠PFD,
    ①若∠EPF=60°,则∠EQF=__________°.
    ②猜想∠EPF与∠EQF的数量关系.(直接写出结论)
    9.(2023下·浙江宁波·七年级统考期中)如图,AB//CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一个动点P,满足0°<∠EPF<180°.
    (1)试问:∠AEP,∠EPF,∠PFC满足怎样的数量关系?
    解:由于点P是平行线AB,CD之间一动点,因此需对点P的位置进行分类讨论.如图1,当点P在EF的左侧时,易得∠AEP,∠EPF,∠PFC满足的数量关系为∠AEP+∠PFC=∠EPF;如图2,当点P在EF的右侧时,写出∠AEP,∠EPF,∠PFC满足的数量关系_________.
    (2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
    ①若∠EPF=100°,则∠EQF的度数为______;
    ②猜想∠EPF与∠EQF的数量关系,并说明理由;
    ③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2与∠DFQ2的角平分线交于点Q3,以此类推,则∠EPF与∠EQ2020F满足怎样的数量关系?(直接写出结果)
    10.(2023下·辽宁大连·七年级统考期末)阅读下面材料,完成(1)~(3)题.
    数学课上,老师出示了这样—道题:
    如图1,已知AB//CD,点E,F分别在AB,CD上,EP⊥FP,∠1=60°.求∠2的度数.
    同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:
    小明:“如图2,通过作平行线,发现∠1=∠3,∠2=∠4,由已知EP⊥FP,可以求出∠2的度数.”
    小伟:“如图3这样作平行线,经过推理,得∠2=∠3=∠4,也能求出∠2的度数.”
    小华:∵如图4,也能求出∠2的度数.”
    (1)请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;
    (2)请你根据以上同学所画的图形,直接写出∠2的度数为_________°;
    老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”
    请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:
    (3)如图,AB//CD,点E,F分别在AB,CD上,FP平分∠EFD,∠PEF=∠PDF,若∠EPD=a,请探究∠CFE与∠PEF的数量关系((用含α的式子表示),并验证你的结论.
    【模型3 “鸡翅”型】
    1.(2023下·湖南株洲·七年级统考期末)①如图1,AB ∥ CD,则∠A+∠E+∠C=360°;②如图2,AB ∥ CD,则∠P=∠A−∠C;③如图3,AB ∥ CD,则∠E=∠A+∠1;④如图4,直线AB ∥ CD ∥ EF,点O在直线EF上,则∠α−∠β+∠γ=180°.以上结论正确的个数是( )
    A.1个B.2个C.3个D.4个
    2.(2023上·七年级课时练习)(1)已知:如图(a),直线DE∥AB.求证:∠ABC+∠CDE=∠BCD;
    (2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?
    3.(2023下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.
    (2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
    (3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.

    4.(2023下·湖北武汉·七年级校考期中)如图,已知:点A、C、B不在同一条直线,AD∥BE

    (1)求证:∠B+∠C−∠A=180°:
    (2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;
    (3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE= .
    5.(2023下·浙江台州·七年级统考期末)如图,已知AD⊥AB于点A,AE∥CD交BC于点E,且EF⊥AB于点F.
    求证:∠C=∠1+∠2.
    证明:∵AD⊥AB于点A,EF⊥AB于点F,(已知)
    ∴∠DAB=∠EFB=90°.(垂直的定义)
    ∴AD∥EF,( )
    ∴__________=∠1( )
    ∵AE∥CD,(已知)
    ∴∠C=________.(两直线平行,同位角相等)
    ∵∠AEB=∠AEF+∠2,
    ∴∠C=∠1+∠2.(等量代换)
    6.(2023下·福建厦门·七年级厦门市第十一中学校考期中)已知,AE//BD,∠A=∠D.
    (1)如图1,求证:AB//CD;
    (2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且3∠E−5∠AFH=18°,求∠EAF+∠GMH的度数.
    7.(2023下·浙江·七年级期末)已知AM//CN,点B为平面内一点,AB⊥BC于B.
    (1)如图1,点B在两条平行线外,则∠A与∠C之间的数量关系为______;
    (2)点B在两条平行线之间,过点B作BD⊥AM于点D.
    ①如图2,说明∠ABD=∠C成立的理由;
    ②如图3,BF平分∠DBC交DM于点F,BE平分∠ABD交DM于点E.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
    8.(2023下·广东河源·七年级河源市第二中学校考期中)已知直线l1∥l2, A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.
    (1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
    (2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)
    【模型4 “骨折”型】
    1.(2023·全国·七年级专题练习)如图,如果AB∥EF,EF∥CD,则∠1,∠2,∠3的关系式 .
    2.(2023下·江苏·七年级泰州市姜堰区第四中学校考周测)如图,将∠A为30°的直角三角板ABC的直角顶点C放在直尺的一边上,则∠1+∠2的度数为 .
    3.(2023上·贵州六盘水·七年级校考阶段练习)如图,AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为 .
    4.(2023·全国·七年级专题练习)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为 .
    5.(2023下·江苏泰州·七年级统考期末)如图,若AB//CD,则∠1+∠3-∠2的度数为
    6.(2023·全国·七年级专题练习)已知AB//CD ,求证:∠B=∠E+∠D
    7.(2023上·黑龙江哈尔滨·七年级哈尔滨德强学校校考期中)已知直线AB∥CD,P为平面内一点,连接PA、PD.
    (1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;
    (2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为 .
    (3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠APD,求∠AND的度数.
    8.(2023下·广东中山·七年级校考期中)(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;
    (2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.
    (3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.
    9.(2023下·山西晋中·七年级统考期中)综合与探究
    【问题情境】
    王老师组织同学们开展了探究三角之间数量关系的数学活动
    (1)如图1,EF//MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;

    【问题迁移】
    (2)如图2,射线OM与射线ON交于点O,直线m//n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动,
    ①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由.
    ②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
    相关试卷

    沪科版七年级数学下册专题10.4平行线四大模型专项训练(40道)(原卷版+解析): 这是一份沪科版七年级数学下册专题10.4平行线四大模型专项训练(40道)(原卷版+解析),共80页。

    人教版七年级数学下册重难点专题提升精讲精练专题02平行线四大经典模型重难点题型专训(原卷版+解析): 这是一份人教版七年级数学下册重难点专题提升精讲精练专题02平行线四大经典模型重难点题型专训(原卷版+解析),共79页。

    中考数学一轮复习:专题5.4 平行线中的四大经典模型(华东师大版)(解析版): 这是一份中考数学一轮复习:专题5.4 平行线中的四大经典模型(华东师大版)(解析版),共67页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题5.4 平行线中的四大经典模型(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map