- 新教材2023版高中数学第六章导数及其应用6.1导数6.1.4求导法则及其应用课件新人教B版选择性必修第三册 课件 1 次下载
- 新教材2023版高中数学第六章导数及其应用6.2利用导数研究函数的性质6.2.1导数与函数的单调性第一课时导数与函数的单调性课件新人教B版选择性必修第三册 课件 1 次下载
- 新教材2023版高中数学第六章导数及其应用6.2利用导数研究函数的性质6.2.2导数与函数的极值最值第一课时导数与函数的极值课件新人教B版选择性必修第三册 课件 1 次下载
- 新教材2023版高中数学第六章导数及其应用6.2利用导数研究函数的性质6.2.2导数与函数的极值最值第二课时导数与函数的最值课件新人教B版选择性必修第三册 课件 1 次下载
- 新教材2023版高中数学第六章导数及其应用6.2利用导数研究函数的性质6.2.2导数与函数的极值最值第三课时导数与函数的极值最值综合问题课件新人教B版选择性必修第三册 课件 1 次下载
人教B版 (2019)选择性必修 第三册6.2.1导数与函数的单调性背景图课件ppt
展开基 础 自 测 1.已知函数f(x),g(x)对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且当x>0时,有f′(x)>0,g′(x)>0,则当x<0时,有( )A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
解析:由已知,得f(x)为奇函数,g(x)为偶函数.∵当x>0时,f′(x)>0,g′(x)>0,∴f(x),g(x)在(0,+∞)上均单调递增,∴f(x)在(-∞,0)上单调递增,g(x)在(-∞,0)上单调递减,∴当x<0时,f′(x)>0,g′(x)<0.
解析:f′(x)=x2-(2a+1)x+a2+a=[x-(a+1)](x-a),令f′(x)<0,得a
已知函数的单调性求参数的取值范围【思考探究】1.已知函数f(x)=x3-ax-1为单调递增函数,如何求实数a的取值范围.[提示] 由已知得f′(x)=3x2-a,因为f(x)在(-∞,+∞)上是单调增函数,所以f′(x)=3x2-a>0在(-∞,+∞)上恒成立,即a<3x2对x∈R恒成立,因为3x2≥0,所以只需a<0.又因为a=0时,f′(x)=3x2≥0,f(x)=x3-1在R上是增函数,所以a≤0.
例2 已知关于x的函数y=x3-ax+b.(1)若函数y=x3-ax+b在(1,+∞)内是增函数,求a的取值范围;
【解析】 y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)min.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].
(2)若函数y=x3-ax+b的一个单调递增区间为(1,+∞),求a的值.
状元随笔 (1)函数在区间(1,+∞)内是增函数,则必有y ′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a的值.
方法归纳1.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理.可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0,利用分离参数或函数性质解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围,然后检验参数取“=”时是否满足题意.2.若函数y=f(x)在区间(a,b)上不单调,则转化为f′(x)=0在(a,b)上有解(需验证解的两侧导数是否异号).
(2)若函数y=x3-ax+b在(1,+∞)上不单调,求a的取值范围.
利用导数证明不等式例3 证明ex≥x+1≥sin x+1(x≥0).
【证明】 令f(x)=ex-x-1(x≥0),则f′(x)=ex-1≥0,∴f(x)在[0,+∞)上单调递增,∴对任意x∈[0,+∞),有f(x)≥f(0),而f(0)=0,∴f(x)≥0,即ex≥x+1,令g(x)=x-sin x(x≥0),g′(x)=1-cs x≥0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0),即x-sin x≥0,∴x+1≥sin x+1(x≥0).综上,ex≥x+1≥sin x+1(x≥1).
方法归纳用导数证明不等式f(x)>g(x)的一般步骤(1)构造函数F(x)=f(x)-g(x),x∈[a,b].(2)证明F′(x)=f′(x)-g′(x)≥0,且F(a)>0.(3)依(2)知函数F(x)=f(x)-g(x)在[a,b]上是单调增函数,故f(x)-g(x)>0,即f(x)>g(x).这是因为F(x)≥F(a)>0,即f(x)-g(x)≥f(a)-g(a)>0.
跟踪训练3 证明不等式ln x≤x-1.
教材反思1.牢记利用导数法解决取值范围问题的2个基本思路(1)将问题转化为不等式在某区间上的恒成立问题,即f′(x)≥0(或f′(x)≤0)恒成立,再利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;(2)先令f′(x)>0(或f′(x)<0),求出参数的取值范围后,再验证参数取“=”时f(x)是否满足题意.
高中数学第六章 导数及其应用6.2 利用导数研究函数的性质6.2.1导数与函数的单调性课堂教学ppt课件: 这是一份高中数学第六章 导数及其应用6.2 利用导数研究函数的性质6.2.1导数与函数的单调性课堂教学ppt课件,共33页。PPT课件主要包含了新知初探·自主学习,课堂探究·素养提升,f′x0,f′x≥0,f′x≤0,f′x=0,答案D,答案A,答案B,1+∞等内容,欢迎下载使用。
高中数学人教B版 (2019)选择性必修 第三册第六章 导数及其应用6.2 利用导数研究函数的性质6.2.1导数与函数的单调性多媒体教学课件ppt: 这是一份高中数学人教B版 (2019)选择性必修 第三册第六章 导数及其应用6.2 利用导数研究函数的性质6.2.1导数与函数的单调性多媒体教学课件ppt,共35页。PPT课件主要包含了目录索引等内容,欢迎下载使用。
高中数学6.2.1导数与函数的单调性作业课件ppt: 这是一份高中数学6.2.1导数与函数的单调性作业课件ppt,共28页。PPT课件主要包含了-∞-2,-∞-1等内容,欢迎下载使用。