|试卷下载
搜索
    上传资料 赚现金
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版).docx
    • 解析
      专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(解析版).docx
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)01
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)02
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)03
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)01
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)02
    八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)03
    还剩20页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级上册12.1 全等三角形练习

    展开
    这是一份数学八年级上册12.1 全等三角形练习,文件包含专题162期中期末专项复习之全等三角形十六大必考点举一反三人教版原卷版docx、专题162期中期末专项复习之全等三角形十六大必考点举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共114页, 欢迎下载使用。


    TOC \ "1-3" \h \u
    \l "_Tc16474" 【考点1 利用全等图形求网格中的角度和】 PAGEREF _Tc16474 \h 1
    \l "_Tc3704" 【考点2 将已知图形分割成几个全等的图形】 PAGEREF _Tc3704 \h 2
    \l "_Tc3982" 【考点3 添加条件使三角形全等】 PAGEREF _Tc3982 \h 3
    \l "_Tc2597" 【考点4 灵活选用判定方法证明全等】 PAGEREF _Tc2597 \h 4
    \l "_Tc8261" 【考点5 尺规作图与全等的综合运用】 PAGEREF _Tc8261 \h 5
    \l "_Tc3560" 【考点6 证明全等的常见辅助线的作法】 PAGEREF _Tc3560 \h 7
    \l "_Tc12266" 【考点7 证一条线段等于两条线段的和(差)】 PAGEREF _Tc12266 \h 8
    \l "_Tc22614" 【考点8 全等中的倍长中线模型】 PAGEREF _Tc22614 \h 10
    \l "_Tc1580" 【考点9 全等中的旋转模型】 PAGEREF _Tc1580 \h 12
    \l "_Tc20492" 【考点10 全等中的垂线模型】 PAGEREF _Tc20492 \h 13
    \l "_Tc24121" 【考点11 全等中的其他模型】 PAGEREF _Tc24121 \h 15
    \l "_Tc32375" 【考点12 全等三角形的动点问题】 PAGEREF _Tc32375 \h 16
    \l "_Tc21209" 【考点13 尺规作图作角平分线】 PAGEREF _Tc21209 \h 18
    \l "_Tc13841" 【考点14 角平分线的判定与性质的综合求值】 PAGEREF _Tc13841 \h 19
    \l "_Tc11333" 【考点15 角平分线的判定与性质的综合证明】 PAGEREF _Tc11333 \h 21
    \l "_Tc26431" 【考点16 角平分线的实际应用】 PAGEREF _Tc26431 \h 22
    【考点1 利用全等图形求网格中的角度和】
    【例1】(2022·山东·禹城市督杨实验学校八年级阶段练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=( )
    A.30°B.45°C.60°D.135°
    【变式1-1】(2022·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.
    【变式1-2】(2022·江苏·八年级单元测试)如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P+∠Q=__________度.
    【变式1-3】(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在4×4的正方形网格中,求α+β=______度.
    【考点2 将已知图形分割成几个全等的图形】
    【例2】(2022·全国·八年级专题练习)沿着图中的虚线,请将如图的图形分割成四个全等的图形.
    【变式2-1】(2022·江苏·八年级专题练习)方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线.
    【变式2-2】(2022·江苏·八年级课时练习)试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.

    【变式2-3】(2022·全国·八年级专题练习)知识重现:“能够完全重合的两个图形叫做全等形.”
    理解应用:我们可以把4×4网格图形划分为两个全等图形.
    范例:如图1和图2是两种不同的划分方法,其中图3与图1视为同一种划分方法.
    请你再提供四种与上面不同的划分方法,分别在图4中画出来.
    【考点3 添加条件使三角形全等】
    【例3】(2022·全国·八年级专题练习)如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件有( )
    A.0个B.1个C.2个D.3个
    【变式3-1】(2022·重庆·中考真题)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )
    A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD
    【变式3-2】(2022·安徽淮南·八年级期末)如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )
    A.BC=BD;B.AC=AD;
    C.∠ACB=∠ADB;D.∠CAB=∠DAB
    【变式3-3】(2022·全国·八年级课时练习)如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有( )
    A.2个B.3个C.4个D.5个
    【考点4 灵活选用判定方法证明全等】
    【例4】(2022·湖南·八年级单元测试)具备下列条件的两个三角形一定是全等三角形的是( ).
    A.有两个角对应相等的两个三角形
    B.两边及其中一条对应边上的高也对应相等的两个三角形
    C.两边分别相等,并且第三条边上的中线也对应相等的两个三角形
    D.有两边及其第三边上的高分别对应相等的两个三角形
    【变式4-1】(2022·广东·佛山市南海区瀚文外国语学校七年级阶段练习)我国传统工艺中,油纸伞制作非常巧妙,其中蕴含着数学知识.如图是油纸伞的张开示意图,AE=AF,GE=GF,则△AEG≌△AFG的依据是( )
    A.SASB.ASAC.AASD.SSS
    【变式4-2】(2022·江苏·泰州市姜堰区第四中学八年级)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )
    A.5对B.6对C.7对D.8对
    【变式4-3】(2022·浙江·八年级单元测试)根据下列条件不能唯一画出△ABC的是( )
    A.AB=5,BC=6,AC=7B.AB=5,BC=6,∠B=45°
    C.AB=5,AC=4,∠C=90°D.AB=3,AC=4,∠C=45°
    【考点5 尺规作图与全等的综合运用】
    【例5】(2022·全国·九年级专题练习)如图,在△ABC外找一个点A'(与点A不重合),并以BC为一边作△A'BC,使之与△ABC全等,且△ABC不是等腰三角形,则符合条件的点A'有( )
    A.1个B.2个C.3个D.4个
    【变式5-1】(2022·全国·八年级课时练习)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD,CD.由作法可得:△ABC≅△CDA的根据是( )
    A.SASB.ASAC.AASD.SSS
    【变式5-2】(2022·广东·普宁市红领巾实验学校八年级阶段练习)在课堂上,张老师布置了一道画图题:画一个Rt△ABC,使∠B=90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN=90°之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是______;_______
    【变式5-3】(2022·北京·101中学九年级开学考试)李老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图2是操作学具时,所对应某个位置的图形的示意图.
    有以下结论:
    ①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ
    ②当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ
    ③当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ
    其中所有正确结论的序号是______________.
    【考点6 证明全等的常见辅助线的作法】
    【例6】(2022·江苏·宿迁青华中学七年级阶段练习)(1)如图①,四边形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G,使DG=BE,连结AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,从而得出∠EAF=∠GAF,最后得出∠EAF与∠BAD之间的数量关系是 .
    (2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②),其余条件不变,上述数量关系是否成立,成立,请证明;不成立,说明理由
    (3)如图③,中俄两国海军在南海举行联合军事演习,中国舰艇在指挥中心(O)北偏西30°的A处,俄罗斯舰艇在指挥中心南偏东70°的B处,两舰艇到指挥中心距离相等.接到行动指令后,中国舰艇向正东方向以60海里/小时的速度前进,俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进,2小时后,指挥中心观测到两舰艇分别到达E,F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.
    【变式6-1】(2022·全国·八年级课时练习)如图,已知:AB=AC,BD=CD,∠A=60°,∠D=140°,则∠B=( )
    A.50∘B.40∘C.40∘或70∘D.30∘
    【变式6-2】(2022·全国·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)
    (2)如图所示,在三角形ABC中,点D是三角形内一点,连接DA、DB、DC,若AB=AC,∠ADB=∠ADC,求证:AD平分∠BAC.
    【变式6-3】(2022·全国·八年级课时练习)已知等腰△ABC中,AB=AC,点D在直线AB上, DE∥BC,交直线AC与点E,且BD=BC,CH⊥AB,垂足为H.
    (1)当点D在线段AB上时,如图1,求证DH=BH+DE;
    (2)当点D在线段BA延长线上时,如图2,当点D在线段AB延长线上时,如图3,直接写出DH,BH,DE之间的数量关系,不需要证明.
    【考点7 证一条线段等于两条线段的和(差)】
    【例7】(2022·全国·八年级专题练习)如图,△ABC中,∠B=45°,∠ACB=30°,CD平分∠ACB,AD⊥CD,求证:CD=AB+AD
    【变式7-1】(2022·安徽淮北·八年级阶段练习)如图,在四边形ABCD中,AB//CD,AE是∠BAC的平分线,且AE⊥CE.若AC=a,BD=b,则四边形ABDC的周长为( )
    A.1.5(a+b)B.2a+bC.3a-bD.a+2b
    【变式7-2】(2022·山东烟台·七年级期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.

    (1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;
    (2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明.
    (3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.
    【变式7-3】(2022·全国·八年级专题练习)在△ABC中,AE,CD为△ABC的角平分线,AE,CD交于点F.
    (1)如图1,若∠B=60°.
    ①直接写出∠AFC的大小;
    ②求证:AC=AD+CE.
    (2)若图2,若∠B=90°,求证:S△ACF=S△AFD+S△CEF+S△DEF.
    【考点8 全等中的倍长中线模型】
    【例8】(2022·江西吉安·七年级期末)(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是 ;
    (2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;
    (3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=12∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.
    【变式8-1】(2022·山东德州·八年级期末)(1)方法呈现:
    如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.
    解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;
    (2)探究应用:
    如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;
    (3)问题拓展:
    如图③,在四边形ABCD中,AB//CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.
    【变式8-2】(2022·山东·高唐县赵寨子中学八年级期中)已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.

    (1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;
    (2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);
    (3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.
    【变式8-3】(2022·全国·八年级)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.
    (1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.
    ①请证明△CED≌△ABD;
    ②中线BD的取值范围是 .
    (2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.
    【考点9 全等中的旋转模型】
    【例9】(2022·全国·八年级专题练习)问题发现:如图1,已知C为线段AB上一点,分别以线段AC,BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE,BD,线段AE,BD之间的数量关系为______;位置关系为_______.
    拓展探究:如图2,把Rt△ACD绕点C逆时针旋转,线段AE,BD交于点F,则AE与BD之间的关系是否仍然成立?请说明理由.
    【变式9-1】(2022·江苏·八年级专题练习)如图,在Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,D、E是斜边BC上两点,且∠DAE=45°,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和为( )
    A.36B.21C.30D.22
    【变式9-2】(2022·江苏·南京民办求真中学七年级阶段练习)如图直角三角形中的空白部分是正方形,正方形的一个顶点将这个直角三角形的斜边分成二部分,AD=3厘米,阴影部分的面积是6平方厘米,DB长______厘米.
    【变式9-3】(2022·全国·八年级课时练习)综合与实践
    (1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .
    (2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=12∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
    (3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=12∠ABC,试探究线段MN、AM、CN的数量关系为 .
    【考点10 全等中的垂线模型】
    【例10】(2022·广东佛山·七年级阶段练习)在△ABC中,∠BAC=90°,AC=AB,直线MN经过点A,且CD⊥MN于D,BE⊥MN于E.
    (1)当直线MN绕点A旋转到图1的位置时,∠EAB+∠DAC= 度;
    (2)求证:DE=CD+BE;
    (3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
    【变式10-1】(2022·陕西省西安爱知中学七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.
    (2)【问题提出】如图2,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.
    (3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.
    【变式10-2】(2022·安徽·九年级期末)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则AGCG= .(直接写出结果)
    【变式10-3】(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
    (1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
    (2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
    【考点11 全等中的其他模型】
    【例11】(2022·重庆八中七年级期中)如图:AD⊥AB,AE⊥AC,AD=AB,AE=AC,连接BE与DC交于M,则:①∠DAC=∠BAE;②ΔDAC≌ΔBAE;③DC⊥BE;正确的有( )个
    A.0B.1C.2D.3
    【变式11-1】(2022·全国·八年级单元测试)如图,已知ΔABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是_________.
    【变式11-2】(2022·山西阳泉·八年级期末)有些数学题,表面上看起来无从下手,但根据图形的特点,可补全成为特殊的图形,然后根据特殊几何图形的性质去考虑,常常可以获得简捷解法.根据阅读,请解答问题:如图所示,已知△ABC的面积为16cm2,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积为___________cm2.
    【变式11-3】(2022·江苏南通·八年级期中)如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.
    (1)如图①,当点P为AB的中点时,求CD的长;
    (2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.
    【考点12 全等三角形的动点问题】
    【例12】(2022·江苏·八年级单元测试)如图,AB=7cm,AC=5cm,∠CAB=∠DBA=60°,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动速度为xcm/s,它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).当点P、Q运动到某处时,有△ACP与△BPQ全等,则相应的x、t的值为( )
    A.x=2,t=74B.x=2,t=74 或x=207,t=1
    C.x=2,t=1D.x=2,t=1或x=207,t=74
    【变式12-1】(2022·江苏·九华中学八年级阶段练习)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).
    (1)AB与DE有什么关系?请说明理由.
    (2)线段AP的长为________(用含t的式子表示).
    (3)连接PQ,当线段PQ经过点C时,t的值为_______.
    【变式12-2】(2022·江苏·泰州中学附属初中七年级期末)长方形ABCD中,AB=6,AD=m,点P以每秒1个单位的速度从A向B运动,点Q同时以每秒2个单位的速度从A向D运动,点E为边CD上任意一点.
    (1)当m=8时,设P,Q两点运动时间为t,
    ①若Q为AD中点,求t的值;
    ②连接QE,若△APQ与△EDQ全等,求DE的长.
    (2)若在边AD上总存在点Q使得△APQ≌△DQE,求m的取值范围.
    【变式12-3】(2022·江苏·姜堰区实验初中八年级)如图① ,在△ ABC中,AB=12cm,BC=20cm,过点C作射线CD∥AB.点M从点B出发,以4cm/s的速度沿BC匀速移动;点N从点C出发,以acm/s的速度沿CD匀速移动.点M、N同时出发,当点M到达点C时,点M、N同时停止移动.连接AM、MN,设移动时间为t(s).
    (1)点M、N从移动开始到停止,所用时间为______s;
    (2)当△ ABM与△ MCN全等时,① 若点M、N的移动速度相同,求t的值;
    ② 若点M、N的移动速度不同,求a的值;
    (3)如图②,当点M、N开始移动时,点P同时从点A出发,以3cm/s的速度沿AB向点B匀速移动,到达点B后立刻以原速度沿BA返回.当点M到达点C时,点M、N、P同时停止移动.在移动的过程中,是否存在△ PBM与△MCN全等的情形?若存在,求出t的值;若不存在,说明理由.
    【考点13 尺规作图作角平分线】
    【例13】(2022·四川广元·中考真题)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是( )
    A.B.
    C.D.
    【变式13-1】(2022·江苏·八年级专题练习)利用作角平分线的方法,可以把一个已知角( )
    A.三等分B.四等分C.五等分D.六等分
    【变式13-2】(2022·四川天府新区教育科学研究院附属中学八年级阶段练习)如图,在Rt△ABC中,∠C=90°,首先以顶点B为圆心,适当长为半径作弧,在边BC、BA上截取BE、BD;然后分别以点D、E为圆心,大于12DE为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=4,P为边AB上一动点,则GP的最小值为( )
    A.2B.4C.8D.无法确定
    【变式13-3】(2022·广西北海·八年级期中)如图,在△ABC中,AB=BC,点D在AB的延长线上.
    (1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法);
    ①作∠CBD的平分线BM;
    ②作边BC上的中线AE,并延长AE交BM于点F;
    (2)在(1)的前提下,猜测BF与边AC的位置关系,并写出证明过程.
    【考点14 角平分线的判定与性质的综合求值】
    【例14】(2022·广东汕头·八年级期末)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
    A.1:1:1B.1:2:3
    C.2:3:4D.3:4:5
    【变式14-1】(2022·全国·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②点M为BC的中点;③AB+CD=AD;④△ADM的面积是梯形ABCD面积的一半.其中正确的个数有( )
    A.1个B.2个C.3个D.4个
    【变式14-2】(2022·重庆江北·八年级期末)如图,已知ΔABC和ΔADE都是等腰三角形,∠BAC=∠DAE=90∘,BE、CD交于点O,连接OA.下列结论:①BE=CD;②BE⊥CD;③OA平分∠CAE;④∠AOB=45∘.其中正确结论的是__________.
    【变式14-3】(2022·全国·八年级课时练习)如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
    (1)求证:∠AOC=90°+12∠ABC;
    (2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.
    【考点15 角平分线的判定与性质的综合证明】
    【例15】(2022·全国·八年级专题练习)已知:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.
    【思考说理】
    (1)求证:FE=FD.
    【反思提升】
    (2)爱思考的小强尝试将【问题背景】中的条件“∠ACB=90°”去掉,其他条件不变,观察发现(1)中结论(即FE=FD)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.
    【变式15-1】(2022·全国·八年级课时练习)如图,已知∠C=60°,AE,BD是△ABC的角平分线,且交于点P.
    (1)求∠APB的度数.
    (2)求证:点P在∠C的平分线上.
    (3)求证:①PD=PE;
    ②AB=AD+BE.
    【变式15-2】(2022·四川成都·七年级期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,AB≠AE,∠BAC=∠DAE=38°.连接BD,CE交于点O.
    (1)求证:BD=CE;
    (2)求∠BOC的度数:
    (3)小明同学对该题进行了进一步研究,他连接了AO,并提出了下面结论:OA平分∠BOE.请给予证明.
    【变式15-3】(2022·山东·北辛中学八年级阶段练习)(1)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:
    (2)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;并证明.
    (3)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    【考点16 角平分线的实际应用】
    【例16】(2022·江苏·八年级专题练习)如图,三条公路两两相交,现计划在△ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是△ABC( )的交点.
    A.三条角平分线B.三条中线
    C.三条高的交点D.三条垂直平分线
    【变式16-1】(2022·江苏·八年级单元测试)如图,要在河流的右侧、公路的左侧M区建一个工厂,位置的选择要满足到河流和公路的距离相等,小红说工厂应该建在河流与公路夹角的平分线上,请你帮小红说出她的理由__________________________________________________.
    【变式16-2】(2022·全国·八年级)如图,l3与两条平行公路l1,l2三条公路相交,若要在l1上确定某个位置,使其到另两条公路的距离相等,这样的位置有( )
    A.1个B.2个C.3个D.无数个
    【变式16-3】(2022·黑龙江黑河·八年级期末)如图,直线l1,l2,l3表示三条公路.现要建造一个中转站P,使P到三条公路的距离都相等,则中转站P可选择的点有( )
    A.一处B.二处C.三处D.四处
    相关试卷

    数学人教版7.1.2平面直角坐标系课后练习题: 这是一份数学人教版<a href="/sx/tb_c102671_t7/?tag_id=28" target="_blank">7.1.2平面直角坐标系课后练习题</a>,共69页。

    苏科版八年级数学下册举一反三专题特训专题13.1期中期末专项复习之数据的收集、整理、描述十六大必考点(原卷版+解析): 这是一份苏科版八年级数学下册举一反三专题特训专题13.1期中期末专项复习之数据的收集、整理、描述十六大必考点(原卷版+解析),共76页。

    人教版七年级数学下册专题训练专题11.7期末专项复习之数据的收集、整理与描述十六大必考点(举一反三)(人教版)(原卷版+解析): 这是一份人教版七年级数学下册专题训练专题11.7期末专项复习之数据的收集、整理与描述十六大必考点(举一反三)(人教版)(原卷版+解析),共76页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        八年级数学上册专题16.2 期中期末专项复习之全等三角形十六大必考点(举一反三)(人教版)(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map