湘教版七年级上册1.1 具有相反意义的量精品教案
展开第1章 有 理 数
1.1 具有相反意义的量
【教学目标】
知识技能目标
1.通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量.
2.理解有理数的意义,体会有理数应用的广泛性.
过程性目标
会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.
情感态度目标
1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.
2.让学生体会到数学中的基本概念都来源于实际需要.
3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.
【重点难点】
1.重点:正数、负数的意义,有理数的意义,能正确对有理数进行分类.
2.难点:对负数的理解以及正确地对有理数进行分类.
【教学过程】
一、创设情境
1.某市某一天的最高温度是零上5 ℃,最低温度是零下5 ℃.要表示这两个温度,如果只用小学学过的数,都记作5 ℃,就不能把它们区分清楚.它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多,例如,珠穆朗玛峰高于海平面约
8 844米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充.
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5 ℃表示零下5 ℃,黑色5 ℃表示零上5 ℃;乙同学说,在数字前面加不同符号来区分,比如,Δ5 ℃表示零上5 ℃,×5 ℃表示零下5 ℃……其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.
现在,数学中采用符号来区分,规定零上5 ℃记做+5 ℃(读做正5 ℃)或5 ℃,把零下5 ℃记做-5 ℃(读做负5 ℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8 844米,记做+8 844米;低于海平面155米,记做-155米;
教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.
2.给出新的整数、分数概念
引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数.
3.给出有理数概念
整数和分数统称为有理数.
4.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同.根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充.
教师小结:按有理数的符号分为三类:正有理数、负有理数和零.在有理数范围内,正数和零统称为非负数.向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.
二、交流反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0 ℃.
三、检测反馈
1.如果将汽车向东行驶3千米记为+3千米,那么记为-3千米表示的是( A )
A.向西行驶3千米 B.向南行驶3千米
C.向北行驶3千米 D.向东南方向行驶3千米
解:先根据向东行驶3千米记为+3千米,可确定向西为负,而-3千米表示的应是向西行驶3千米.
2.在0,2,-7,-5,3.14,-3,-3,+0.75中,负数共有 ( D )
A.1个 B.2个 C.3个 D.4个
解:在正数的前面加上“-”号的数即是负数,本题中的-7,-5,-3,-3是负数.
3.飞机上升了-80米,实际上是 下降80米 .
解:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.
4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.
解:本题答案不唯一,只要满足题意即可,如河道中第一天的水位是-0.2米,第二天的水位是+0.3米,其中-0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.
四、布置作业
课本P5习题1.1A组第1、2、3题.
五、板书设计
1.1具有相反意义的量 | ||
用正、负数表示生活中具有相反意义的量. | 有理数的概念及分类. | 当堂检测 |
…… | …… | …… |
…… | …… |
六、教学反思
在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起到主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.
优点:本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程.
缺点:学生在刚开始接触这部分内容时或多或少会有点不习惯.对具有相反意义的量的理解不是太好,学习中发现仍有部分同学在书写负数时漏掉负号.
七年级上册2.4 整式优秀教学设计: 这是一份七年级上册2.4 整式优秀教学设计,共6页。教案主要包含了教学目标,重点难点,教学过程等内容,欢迎下载使用。
初中数学湘教版七年级上册1.2.1数轴获奖教案: 这是一份初中数学湘教版七年级上册1.2.1数轴获奖教案,共4页。
七年级上册第1章 有理数1.1 具有相反意义的量教学设计: 这是一份七年级上册第1章 有理数1.1 具有相反意义的量教学设计,共4页。教案主要包含了教学目标,教学重点,教学难点等内容,欢迎下载使用。