|课件下载
搜索
    上传资料 赚现金
    人教版数学八上 11.2.1 三角形的内角 课件
    立即下载
    加入资料篮
    人教版数学八上 11.2.1 三角形的内角 课件01
    人教版数学八上 11.2.1 三角形的内角 课件02
    人教版数学八上 11.2.1 三角形的内角 课件03
    人教版数学八上 11.2.1 三角形的内角 课件04
    人教版数学八上 11.2.1 三角形的内角 课件05
    人教版数学八上 11.2.1 三角形的内角 课件06
    人教版数学八上 11.2.1 三角形的内角 课件07
    人教版数学八上 11.2.1 三角形的内角 课件08
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册11.2.1 三角形的内角精品课件ppt

    展开
    这是一份人教版八年级上册11.2.1 三角形的内角精品课件ppt,共25页。PPT课件主要包含了知识回顾,学习目标,课堂导入,知识点1,新知探究,三角形内角和定理,例题讲解,跟踪训练,知识点2,例题解析等内容,欢迎下载使用。

    1、三角形的概念和表示方法、三角形按角分类和按边分类、三角形的三边关系以及实际应用.2、三角形的高、中线、角平分线的概念、表示方法和性质,三条高、三条中线、三条角平分线分别在三角形的位置以及它们各自交点分别在三角形的位置.3、三角形的稳定性以及实际应用.
    1.学习和掌握三角形的内角和定理. 2.理解三角形的内角和定理的推导、验证过程. 3.在解决实际问题时能熟练运用三角形的内角和定理.
    小学的时候我们通过测量或者剪拼已经验证过三角形的内角和等于180°,现在怎么通过推理去验证这个结论呢?请大家在纸上任意画一个三角形,将它的内角剪下拼合在一起,得到一个平角. 在这个操作中,你能发现证明的思路吗?
    如图,∠B,∠C分别拼凑在∠A的左右两侧,三个角合起来形成一个平角,出现一条过点A的直线l. 想一想,直线l与△ABC的边BC有什么关系?由这个图,你能想出证明“三角形的内角和等于180°”的方法吗?
    如图,已知△ABC,求证∠A+∠B+∠C=180°.
    证明:过点A作直线l,使得l//BC. ∵l//BC, ∴∠2=∠B,∠3=∠C(两直线平行,内错角相等). ∵∠1、∠2、∠3构成平角, ∴∠1+∠2+∠3=180°(平角的定义). 则∠BAC+∠B+∠C=180°(等量代换).
    证明:过点C作直线l,使得l//AB,延长BC. ∵l//AB, ∴∠2=∠A(两直线平行,内错角相等), ∠3=∠B(两直线平行,同位角相等). ∵∠1、∠2、∠3构成平角, ∴∠1+∠2+∠3=180°(平角的定义). 则∠ACB+∠A+∠B=180°(等量代换).
    例1:如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线.求∠ADB的度数.
    解:∵∠BAC=40°,AD是△ABC的角平分线, ∴∠BAD=20°. ∵在△ADB中,∠B=75°, ∴∠ADB=180°-∠BAD-∠B=85°(三角形内角和定理).
    例2:如图是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向. 从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A,B两岛的视角∠ACB是多少度?
    分析:A、B、C三岛的连线构成△ABC,所求的∠ACB是△ABC的一个内角,如果能求出∠CAB,∠ABC,就能求出∠ACB.
    解:∠CAB=∠BAD-∠CAD=80°-50°=30°, 由AD//BE得,∠BAD+∠ABE=180°, 所以∠ABE=180°-∠BAD=180°-80°=100°, ∠ABC=∠ABE-∠EBC=100°-40°=60°. 在△ABC中,∠ACB=180°-∠ABC-∠CAB =180°-60°-30° =90°.答:从B岛看A,C两岛的视角∠ABC是60度,从C岛看A,B两岛的视角∠ACB是90度.
    1、如图,从A处观测C处的仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,从C处观测A,B两处的视角∠ACB是多少度?
    解:∵∠CAD=30°,∠ADC=90°, ∴∠ACD=60°. ∵∠CBD=45°,∠ADC=90°, ∴∠BCD=45°. ∴∠ACB=∠ACD-∠BCD=15°.
    解:∠A+∠B=90°. ∵在直角三角形ABC中,∠C=90°, ∠A+∠B+∠C=180°,则∠A+∠B=180°-∠C. ∴∠A+∠B=90°.
    在直角三角形ABC中,∠C=90°,两个锐角有什么关系?
    直角三角形的性质与判定
    性质:直角三角形的两个锐角互余.几何语言:在△ABC中,如果∠C=90°,那么∠A+∠B=90°.直角三角形的表示:直角三角形可以用符号“Rt△”表示,即直角三角形ABC可以写成Rt△ABC.注意:Rt△后必须紧跟表示直角三角形的三个顶点的大写字母,不能单独使用.
    如图,∠C=∠D=90°,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?
    解:在Rt△ACE中,∠CAE=90°-∠AEC, 在Rt△BDE中,∠DBE=90°-∠BED. ∵∠AEC=∠BED, ∴∠CAE=∠DBE.
    判定:有两个角互余的三角形是直角三角形.几何语言:在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形.注意:在直角三角形中,若已知一个锐角或者两个锐角之间的关系,可以直接运用两个锐角互余求解,不需要再利用三角形的内角和定理求解.
    1、如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
    解:∠ACD与∠B大小相等. 在△BCD中,CD⊥AB, 则∠CDB=90°,∠B+∠BCD=90°. ∵∠ACB=90°, ∴∠ACD+∠BCD=90°,则∠ACD=∠B.
    2、如图,∠C=90°,∠1=∠2,△ADE是直角三角形吗?为什么?
    解:△ADE是直角三角形. ∵在△ABC中,∠C=90°, ∴∠A+∠2=90°. ∵∠1=∠2, ∴∠A+∠1=90°,则△ADE是直角三角形.
    如图,在△ABC中,AD是BC边上的高,点E是AB边上的一点,CE交AD于点M,且∠DCM=∠MAE. 求证:△ACE是直角三角形.
    证明:∵AD是BC边上的高, ∴∠DMC+∠DCM=90°. ∵∠DMC=∠AME,∠DCM=∠MAE, ∴∠AME+∠MAE=90°. ∴△ACE是直角三角形.
    如图,在△ABC中,AD⊥BC,∠1=∠B. 求证:△ABC是直角三角形.
    证明:∵AD⊥BC, ∴∠BAD+∠B=90°. ∵∠1=∠B, ∴∠BAD+∠1=90°,则∠BAC=90°. ∴△ABC是直角三角形.
    如图,AB//CD,∠BAE=∠DCE=45°,填空:
    ∵AB//CD, ∴∠1+45°+∠2+45°=( ). ∴∠1+∠2=( ). ∴∠E=( ). ∴△AEC是( ).
    有两个角互余的三角形是直角三角形
    三角形的内角和为180°
    直角三角形的两个锐角互余
    如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小是( ) A.44° B.40° C.39° D.38°
    分析:利用三角形内角和定理,可以求出△ABC的 第三个内角的度数. 利用角平分线的性质和平行线的性质,可以 转化出相等的角.
    解:∵∠A=54°,∠B=48°, ∴∠ACB=180°-54°-48°=78°. ∵CD平分∠ACB, ∴∠DCB=39°. ∵DE//BC, ∴∠CDE=∠DCB=39°.
    如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.
    分析:利用三角形内角和定理,将已知的角度与未知角 之间联系起来. 利用等量代换将相等的角进行替换.
    相关课件

    人教版11.2.1 三角形的内角试讲课课件ppt: 这是一份人教版11.2.1 三角形的内角试讲课课件ppt,文件包含1121《三角形的内角》课件-人教版数学八上pptx、1121《三角形的内角》教案-人教版数学八上doc等2份课件配套教学资源,其中PPT共25页, 欢迎下载使用。

    初中人教版11.2.1 三角形的内角优质ppt课件: 这是一份初中人教版11.2.1 三角形的内角优质ppt课件,文件包含1121三角形的内角第2课时教学课件pptx、人教数学八上1121三角形的内角学案+练习docx、第十一章1121三角形的内角教学详案docx等3份课件配套教学资源,其中PPT共15页, 欢迎下载使用。

    初中数学人教版八年级上册11.2.1 三角形的内角优质ppt课件: 这是一份初中数学人教版八年级上册11.2.1 三角形的内角优质ppt课件,文件包含1121三角形的内角第1课时教学课件pptx、人教数学八上1121三角形的内角学案+练习docx、第十一章1121三角形的内角教学详案docx等3份课件配套教学资源,其中PPT共21页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map