数学25.1.2 概率同步测试题
展开第二十五章检测卷
时间:120分钟 满分:150分
班级:__________ 姓名:__________ 得分:__________
一、选择题(本题共12小题,每小题3分,共36分)
1.下列事件中,是必然事件的是( )
A.两条线段可以组成一个三角形
B.400人中有两个人的生日在同一天
C.早上的太阳从西方升起
D.打开电视机,它正在播放动画片
2.“遵义地区明天降水概率是15%”,下列说法中,正确的是( )
A.遵义地区明天降水的可能性较小
B.遵义地区明天将有15%的时间降水
C.遵义地区明天将有15%的地区降水
D.遵义地区明天肯定不降水
3.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )
A. B. C. D.
4.东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是( )
A. B. C. D.
5.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是( )
A. B. C. D.
6.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为( )
A.2种 B.3种 C.5种 D.6种
7.两道单选题都含A、B、C、D四个选项,瞎猜这两道题,恰好全部猜对的概率是( )
A. B. C. D.
8.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.当游戏对甲、乙双方公平时,x的值为( )
A.3 B.4 C.5 D.6
9.如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )
A. B.
C. D.
10.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为B( )
A.12 B.15 C.18 D.21
11.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是( )
A. B. C. D.
12.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a、b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是( )
A. B. C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
13.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其他都相同.搅匀后从中任意摸出1个球,摸出白球的可能性 摸出黄球的可能性(填“等于”“小于”或“大于”).
14.抛掷一枚质地均匀的正方体骰子,朝上一面的点数为偶数的概率是 .
15.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .
第15题图
16.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:
抛掷总次数 | 100 | 150 | 200 | 300 |
杯口朝上的频数 | 21 | 32 | 44 | 66 |
估计任意抛掷一只纸杯,杯口朝上的概率是 .
17.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有 个.
18.“十一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .
第18题图
三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(10分)北京地铁二线内环列车,平均每隔4分钟就有一列列车经过某地铁站,一列列车从该站开出环行40分钟回到该站,已知该线上有6列新的列车,其余为原来的列车,张华从该车站乘内环列车.张华乘坐哪种列车的可能性较大?哪种列车的可能性较小?
20.(10分)有A、B、C、D四张卡片上分别写有-2、、、π四个实数,从中任取两张卡片.
(1)请列举所有可能的结果(分别用字母A、B、C、D表示);
(2)求取到的两个数都是无理数的概率.
21.(10分)一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别,从中任意摸出一个球.
(1)求摸到绿球的概率;
(2)再向口袋中放入几个绿球,才能使摸到绿球的概率为?
22.(10分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格;
事件A | 必然事件 | 随机事件 |
m的值 |
|
|
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.
23.(12分)某同学报名参加校运动会,有以下5个项目可供选择:
径赛项目:100m,200m,400m(分别用A1、A2、A3表示);
田赛项目:跳远,跳高(分别用B1、B2表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为________;
(2)该同学从5个项目中任选两个,利用树状图或列表列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
24.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
25.(12分)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.
(1)甲蚂蚁选择“向左”爬行的概率为________;
(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.
26.(14分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸出黑球的次数m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的频率 | 0.23 | 0.21 | 0.30 | 0.26 | 0.253 | 0.251 |
(1)根据上表数据估计从袋中摸出一个球是黑球的概率是________;
(2)估算袋中白球的个数;
(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.
答案:
1.B 2.A 3.A 4.A 5.C 6.D 7.D 8.B 9.B 10.B 11.C
12.B 解析:列举出事件:
a b | -2 | 0 | 1 | 2 |
-2 | (-2,-2) | (-2,0) | (-2,1) | (-2,2) |
0 | (0,-2) | (0,0) | (0,1) | (0,2) |
1 | (1,-2) | (1,0) | (1,1) | (1,2) |
2 | (2,-2) | (2,0) | (2,1) | (2,2) |
共有16种结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)有:(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2)共7种可能情况,所以落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是,故选B.
13.小于 14. 15. 16.0.22 17.15 18.
19.解:∵40÷4=10,∴该线上有10列列车.(2分)∵该线上有6列新的列车,∴乘坐新车的可能性为=,(5分)乘坐旧车的可能性为=.(8分)∴张华乘坐新列车的可能性较大,旧列车的可能性较小.(10分)
20.解:(1)共有六种等可能的结果,即AB、AC、AD、BC、BD、CD;(5分)
(2)P(两个都是无理数)=.(10分)
21.解:(1)6+9+3=18(个),P(摸到绿球)==;(5分)
(2)设需要向这个口袋中再放入x个绿球,(6分)则依题意得
=,解得x=2.(9分)
答:需要向这个口袋中再放入2个绿球.(10分)
22.解:(1)4(2分)
(2)2,3(5分)
(3)根据题意得=,解得m=2,所以m的值为2.(10分)
23.解:(1)(3分)
(2)画树状图如下:
∵共有20种等可能的结果,(9分)恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为=.(12分)
24.解:(1)小晗任意按下一个开关,正好楼梯灯亮的概率是;(5分)
(2)画树状图得:(9分)
∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.(12分)
25.解:(1)
(2)画树状图如下:
∵共有4种等可能情况,两只蚂蚁开始爬行后会“触碰到”的有2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为=.(12分)
26.解:(1)0.25(3分)
(2)设袋中白球为x个,依题意有=0.25,解得x=3.(7分)
答:估计袋中有3个白球;(8分)
(3)用B代表一个黑球,W1、W2、W3代表白球,将摸球情况列表如下:(12分)
第二次 第一次 | B | W1 | W2 | W3 |
B | (B,B) | (B,W1) | (B,W2) | (B,W3) |
W1 | (W1,B) | (W1,W1) | (W1,W2) | (W1,W3) |
W2 | (W2,B) | (W2,W1) | (W2,W2) | (W2,W3) |
W3 | (W3,B) | (W3,W1) | (W3,W2) | (W3,W3) |
总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.(14分)
人教版九年级上册数学第25章《概率初步》单元练习卷: 这是一份人教版九年级上册数学第25章《概率初步》单元练习卷,共55页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
初中人教版25.1.2 概率精品习题: 这是一份初中人教版25.1.2 概率精品习题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十五章 概率初步25.1 随机事件与概率25.1.2 概率同步训练题: 这是一份初中数学人教版九年级上册第二十五章 概率初步25.1 随机事件与概率25.1.2 概率同步训练题,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。