





第四章 概率与统计(B卷·能力提升练)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教B版2019)
展开班级 姓名 学号 分数
第四章 概率与统计(B卷·能力提升练)
(时间:120分钟,满分:150分)
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·江西省信丰中学高二阶段练习(理))设,,这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.
B.
C.对任意正数,
D.对任意正数,
2.(2022·北京市第十二中学高二期中)一个袋子中有4个红球,n个绿球,采用不放回的方式从中依次随机地取出2个球,若取出第二个球是红球的概率为0.4,那么n的值是( )
A.3 B.4 C.6 D.8
3.(2022·浙江·杭州四中高二期末)某校高二(3)班举行迎新活动有十个不同的三等奖品,编号为01,02,…,10,现用抽签法从中抽取3个奖品与高二(4)班进行奖品对换,设编号为02的奖品被抽到的可能性为,编号为03的奖品被抽到的可能性为,则( )
A., B.,
C., D.,
4.(2022·天津·高二期末)某人外出出差,委托邻居给家里植物浇一次水,设不浇水,植物枯萎的概率为0.8,浇水,植物枯萎的概率为0.15.邻居记得浇水的概率为0.9.则该人回来植物没有枯萎的概率为( )
A.0.785 B.0.845 C.0.765 D.0.215
5.(2022·福建省福州高级中学高二期末)一个笼子里关着7只猫,其中有3只黑猫、4只白猫.到了给猫喂食时间时,把笼子打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻,如果7只猫都钻出了笼子,事件表示“第k只出笼的猫是黑猫”,,则下列结论错误的是( )
A. B.
C. D.
6.(2022·全国·高二单元测试)某社团开展“建党100周年主题活动——学党史知识竞赛”,甲、乙两人能得满分的概率分别为、,两人能否获得满分相互独立,则下列说法正确的是( ).
A.两人均获得满分的概率为
B.两人至少一人获得满分的概率为
C.两人恰好只有甲获得满分的概率为
D.两人至多一人获得满分的概率为
7.(2022·全国·高二课时练习)某企业推出了一款新食品,为了解每单位该食品中所含某种营养成分x(单位:克)与顾客的满意率y的关系,通过调查研究发现可选择函数模型来拟合y与x的关系,根据以下数据:
营养成分含量x/克 | 1 | 2 | 3 | 4 | 5 |
| 4.34 | 4.36 | 4.44 | 4.45 | 4.51 |
可求得y关于x的回归方程为( )A. B.
C. D.
8.(2022·上海市七宝中学高二期末)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,…,n,且,定义X的信息熵.
命题1:若,则随着n的增大而增大;
命题2:若,随机变量Y所有可能的取值为1,2,…,m,且,则.
则以下结论正确的是( )
A.命题1正确,命题2错误 B.命题1错误,命题2正确
C.两个命题都错误 D.两个命题都正确
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(2022·山东泰安·高二期末)对两个变量和进行回归分析,得到一组样本数据则下列结论正确的是( )
A.若求得的经验回归方程为,则变量和之间具有正的线性相关关系
B.若这组样本数据分别是,则其经验回归方程必过点
C.若同学甲根据这组数据得到的回归模型1的残差平方和为.同学乙根据这组数据得到的回归模型2的残差平方和为,则模型1的拟合效果更好
D.若用相关指数来刻画回归效果,回归模型3的相关指数,回归模型4的相关指数,则模型4的拟合效果更好
10.(2022·浙江·高二期中)已知一个古典概型的样本空间和事件和事件,满足,则下列结论正确的是( )
A. B.
C.与互斥 D.与相互独立
11.(2022·山东青岛·高二期中)如图,由到的电路中有4个元件,分别标为元件1,元件2,元件3,元件4,电流能通过元件1,元件2的概率都是,电流能通过元件3,元件4的概率都是0.9,电流能否通过各元件相互独立.已知元件1,元件2中至少有一个能通过电流的概率为0.96,则( )
A. B.元件1和元件2恰有一个能通的概率为
C.元件3和元件4都通的概率是0.81 D.电流能在与之间通过的概率为0.9504
12.(2022·甘肃·西北师大附中高二期中)下列四个命题正确的为( )
A.抛掷两枚质地均匀的骰子,则向上点数之和不小于10的概率为
B.新高考改革实行“3+1+2”模式,某同学需要从政治、地理、化学、生物四个学科中任选两科参加高考,则选出的两科中含有政治学科的概率为
C.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为
D.设两个独立事件A和B都不发生的概率为,A发生且B不发生的概率与B发生且A不发生的概率相同,则事件A发生的概率为
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.(2022·上海市嘉定区安亭高级中学高二期中)投掷一颗均匀的骰子,设事件:点数大于等于3;事件:点数为奇数.则______.
14.(2022·湖北·十堰市天河英才高中有限公司高二阶段练习)某大学选拔新生进“篮球”“电子竞技”“国学”三个社团,据资料统计,新生是否通过考核选拔进入这三个社团相互独立.某新生参加社团时,假设他通过考核选拔进入该校的“篮球”“电子竞技”“国学”三个社团的概率依次为,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,则__________.
15.(2022·全国·高二单元测试)现有一款闯关游戏,共有4关,规则如下:在第关要抛掷骰子次,每次观察向上面的点数并做记录,如果这n次抛掷所出现的点数之和大于,则算闯过第关,,2,3,4.假定每次闯关互不影响,则下列结论错误的序号是______.
(1)直接挑战第2关并过关的概率为;
(2)连续挑战前两关并过关的概率为;
(3)若直接挑战第3关,设A=“三个点数之和等于15”,B=“至少出现一个5点”,则;
(4)若直接挑战第4关,则过关的概率是.
16.(2022·上海·高二单元测试)甲乙丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.则n次传球后球在甲手中的概率______.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
(2022·陕西·府谷县府谷中学高二阶段练习(理))为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了“垃圾分类,从我做起”生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需征集一部分垃圾分类志愿者.某垃圾站的日垃圾分拣量(千克)与垃圾分类志愿者人数(人)的数据统计如下:
志愿者人数(人) | 2 | 3 | 4 | 5 | 6 |
日垃圾分拣量(千克) | 25 | 30 | 40 | 45 | 60 |
通过对察散点图,发现日垃圾分拣量(千克)与垃圾分类志愿者人数(人)有线性相关关系.
(1)求线性回归直线方程;
(2)试预测日垃圾分拣量80千克,需要的垃圾分类志愿者人数.
参考公式:,.
18.(12分)
(2022·河北·张家口市第一中学高二期中)在一次抗洪抢险中,准备用射击的方法引爆从河上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射击命中率都是,每次命中与否互相独立.求:
(1)直到第3次射击汽油才流出的概率;
(2)直到第3次射击汽油罐才被引爆的概率;
(3)汽油罐被引爆的概率.
19.(12分)
(2022·广东·饶平县第二中学高二期中)2021年9月3日,教育部召开第五场金秋新闻发布会,会上发布了第八次全国学生体质与健康调研结果.根据调研结果数据显示,我国大中小学的健康情况有了明显改善,学生总体身高水平也有所增加.但同时在超重和肥胖率上,中小学生却有一定程度上升,大学生整体身体素质也有所下滑.某市为调研本市学生体质情况,采用按性别分层抽样的方法进行调查,得到体质测试样本的统计数据(单位:人)如下:
| 优秀 | 良好 | 及格 | 不及格 |
男生 | 100 | 200 | 780 | 120 |
女生 | 120 | 200 | 520 | 120 |
(1)根据所给数据,完成下面列联表,并据此判断:能否依据小概率值的独立性检验下认为该市学生体质测试是否达标与性别有关.(注:体质测试成绩为优秀、良好或及格则体质达标,否则不达标)
| 达标 | 不达标 | 合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(2)体质测试成绩为优秀或良好则称体质测试成绩为优良,以样本数据中男、女生体质测试成绩优良的频率视为该市男、女生体质测试成绩优良的概率,在该市学生中随机选取2名男生,2名女生,设所选4人中体质测试成绩优良人数为,求的分布列及数学期望.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附:
20.(12分)
(2022·福建·莆田一中高二期末)在2022年卡塔尔世界杯亚洲区预选赛十二强赛中,中国男足以1胜3平6负进9球失19球的成绩惨败出局.甲、乙足球爱好者决定加强训练提高球技,两人轮流进行定位球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得分;两人都进球或都不进球,两人均得0分,设甲每次踢球命中的概率为,乙每次踢球命中的概率为,甲扑到乙踢出球的概率为,乙扑到甲踢出球的概率,且各次踢球互不影响.
(1)经过1轮踢球,记甲的得分为X,求X的数学期望;
(2)若经过n轮踢球,用表示经过第轮踢球累计得分后甲得分高于乙得分的概率,求.
21.(12分)
(2022·山东·青岛大学附属中学高二期中)某商场拟在周年店庆进行促销活动,对一次性消费超过200元的顾客,特别推出“玩游戏,送礼券”的活动,游戏规则如下:每轮游戏都抛掷一枚质地均匀的骰子,若向上点数不超过4点,获得1分,否则获得2分,进行若干轮游戏,若累计得分为9分,则游戏结束,可得到200元礼券,若累计得分为10分,则游戏结束,可得到纪念品一份,最多进行9轮游戏.
(1)当进行完3轮游戏时,总分为,求的分布列和数学期望;
(2)若累计得分为的概率为,初始分数为0分,记
(i)证明:数列是等比数列;
(ii)求活动参与者得到纪念品的概率.
22.(12分)
(2022·广东·深圳市龙岗区平冈中学高二期中)某超市开展购物抽奖送积分活动,每位顾客可以参加(,且)次抽奖,每次中奖的概率为,不中奖的概率为,且各次抽奖相互独立.规定第1次抽奖时,若中奖则得10分,否则得5分.第2次抽奖,从以下两个方案中任选一个;
方案① :若中奖则得30分,否则得0分;
方案② :若中奖则获得上一次抽奖得分的两倍,否则得5分.
第3次开始执行第2次抽奖所选方案,直到抽奖结束.
(1)如果,以抽奖的累计积分的期望值为决策依据,顾客甲应该选择哪一个方案?并说明理由;
(2)记顾客甲第i次获得的分数为,并且选择方案②.请直接写出与的递推关系式,并求的值.(精确到0.1,参考数据:.)