|试卷下载
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 第1讲 二次根式--提高班(教师版).docx
    • 第1讲 二次根式--提高班(学生版).docx
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷01
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷02
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷03
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷01
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷02
    初二数学人教版春季班 第1讲 二次根式--提高班 试卷03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初二数学人教版春季班 第1讲 二次根式--提高班 试卷

    展开
    初二数学人教版下册春季班

    第1讲 二次根式


    知识点1 二次根式的概念
    二次根式的概念:一般地,我们把形如a(a≥0)的式子叫做二次根式.
    注意:①“ ”称为二次根号;
    ②a(a≥0)是一个非负数.
    【典例】
    例1(2020秋•罗湖区期中)下列各式一定为二次根式的是(  )
    A.x2−1 B.x C.x2+1 D.x+1
    【解答】解:A、当x=0时,被开方数是﹣1<0,所以它不是二次根式,故本选项不符合题意;
    B、当x<0时,它不是二次根式,故本选项不符合题意;
    C、被开方数大于0,所以它是二次根式,故本选项符合题意;
    D、当x<﹣1时,被开方数是x+1<0,它不是二次根式,故本选项不符合题意.
    故选:C.
    【方法总结】
    本题考查了二次根式的定义.解题的关键是明确二次根式有意义的条件是被开方数是非负数.
    例2 (2020秋•威远县校级期中)下列各式一定是二次根式的是(  )
    A.32 B.a−2 C.x2+1 D.−(a2+1)2
    【解答】解:A、32根指数不是2,不是二次根式,故本选项不合题意;
    B、当a﹣2<0时,该式子不是二次根式,故本选项不合题意;
    C、x取任意实数,x2+1≥1,x2+1是二次根式,故本选项符合题意;
    D、﹣(a2+1)2<0,该式子不是二次根式,故本选项不合题意.
    故选:C.
    【方法总结】
    本题考查了二次根式的定义,熟练掌握二次根式有意义的条件是解题的关键.
    【随堂练习】
    1.(2020春•灵宝市校级月考)下列给出的式子是二次根式的是(  )
    A.±3 B.5 C.3−π D.3a
    【解答】解:A.±3不是二次根式,故本选项不符合题意;
    B.5是二次根式,故本选项符合题意;
    C.∵3﹣π<0,
    ∴3−π不是二次根式,故本选项不符合题意;
    D.∵3a的根指数是3,不是2,
    ∴3a不是二次根式,故本选项不符合题意;
    故选:B.
    2.(2020春•汉川市期末)下列各式一定是二次根式的是(  )
    A.x B.2 C.−4 D.35
    【解答】解:A、x<0时,x不是二次根式,故A不符合题意;
    B、2是二次根式,故B符合题意;
    C、二次根式的被开方数是非负数,故C不符合题意;
    D、35,根指数不是2,不是二次根式,故D不符合题意;
    故选:B.


    知识点2 二次根式有意义的条件
    二次根式有意义的条件
    判断二次根式有意义的条件:
    (1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.
    (2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.
    (3)二次根式具有非负性.a(a≥0)是一个非负数.
    【典例】
    例1 (2020秋•南关区校级期末)当代数式4−xx2−1有意义时,x应满足的条件 x≤4且x≠±1 .
    【解答】解:∵代数式4−xx2−1有意义,
    ∴4﹣x≥0,x2﹣1≠0,
    解得,x≤4且x≠±1,
    故答案为:x≤4且x≠±1.
    【方法总结】
    本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.

    例2(2020秋•石鼓区校级月考)若实数a、b满足a=b−4+4−b+2,求a+b的平方根.
    【解答】解:∵b−4≥04−b≥0,
    ∴b≥4b≤4,
    ∴b=4,
    把b=4代入上式得a=2,
    ∴a+b=2+4=6,
    ∴a+b的平方根为±6.
    【方法总结】
    本题考查二次根式有意义的条件、平方根的定义,根据非负性求得b的值是关键.

    【随堂练习】
    1.(2020•越秀区一模)要使代数式x+2x−1有意义,则x应满足 x≥﹣2且x≠1 .
    【解答】解:根据题意得:x+2≥0且x﹣1≠0,
    解得:x≥﹣2且x≠1.
    故答案为:x≥﹣2且x≠1.
    2.(2020秋•淇滨区校级月考)若代数式(x−2)02−x−1有意义,则x的取值范围是 x≥1且x≠2或5 .
    【解答】解:∵代数式(x−2)02−x−1有意义,
    ∴x﹣2≠0且x﹣1≥0且x﹣1≠4,
    解得x≥1且x≠2或5,
    ∴x的取值范围是x≥1且x≠2或5,
    故答案为:x≥1且x≠2或5.
    3.(2020秋•海淀区校级月考)已知x,y为实数,y=x2−16−16−x2+1x−4,则x+8y= ﹣5 .
    【解答】解:根据题意得x2﹣16≥0且16﹣x2≥0,解得x2=16,
    ∴x=4或x=﹣4,
    而x﹣4≠0,
    ∴x=﹣4,
    当x=﹣4时,y=0−0+1−4−4=−18,
    ∴x+8y=﹣4+8×(−18)=﹣5.
    故答案为﹣5.

    知识点3 二次根式的性质与化简
    二次根式的性质与化简
    (1)二次根式的基本性质:
    ①a≥0; a≥0(双重非负性).
    ②(a)²=a(a≥0).
    ③a2=|a|=&a(a≥0)&−a(a<0)
    (2)二次根式的化简:
    ①利用二次根式的基本性质进行化简;
    ②利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab=a•b (a≥0,b≥0),ab=ab (a≥0,b>0)
    (3)化简二次根式的步骤:
    ①把被开方数分解因式;
    ②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.
    【典例】
    例1 (2020秋•简阳市 期中)已知a≥﹣1,化简a2+2a+1= a+1 .
    【解答】解:∵a≥﹣1,
    ∴a+1≥0,
    则原式=(a+1)2
    =|a+1|
    =a+1,
    故答案为:a+1.
    【方法总结】
    本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质a2=|a|.
    例2 (2020秋•双流区校级月考)实数a,b在数轴上的位置如图所示,化简:|a+1|−(b−1)2+(a−b)2= ﹣2a .

    【解答】解:由题可得,﹣2<a<﹣1,1<b<2,
    ∴a+1<0,b﹣1>0,a﹣b<0,
    ∴|a+1|−(b−1)2+(a−b)2
    =|a+1|﹣|b﹣1|+|a﹣b|
    =﹣a﹣1﹣(b﹣1)+(﹣a+b)
    =﹣a﹣1﹣b+1﹣a+b
    =﹣2a,
    故答案为:﹣2a.
    【方法总结】
    本题主要考查了二次根式的性质与化简,解决问题的关键是掌握二次根式的性质以及绝对值的性质.

    【随堂练习】
    1.(2020秋•建平县期末)实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简a2+|a+b|的结果为(  )

    A.2a+b B.﹣2a﹣b C.b D.2a﹣b
    【解答】解:由题意可知:a<﹣1<b<﹣a,
    ∴a+b<0,
    ∴原式=|a|﹣(a+b)
    =﹣a﹣a﹣b
    =﹣2a﹣b,
    故选:B.
    2.(2020秋•灞桥区校级月考)已知当1<a<2时,代数式(a−2)2−|a﹣1|的值是 ﹣2a+3 .
    【解答】解:∵1<a<2,
    ∴(a−2)2−|a﹣1|=|a﹣2|﹣|a﹣1|
    =﹣(a﹣2)﹣(a﹣1)
    =﹣a+2﹣a+1
    =﹣2a+3.
    故答案为﹣2a+3.
    3.(2020秋•埇桥区期中)实数在数轴上的位置如图所示,化简:|a﹣b|−b2.

    【解答】解:由数轴可知:a<0,b>0,a﹣b<0
    所以|a﹣b|−b2=|a﹣b|﹣|b|=b﹣a﹣b=﹣a.
    知识点4 二次根式的乘除法
    1.最简二次根式
    最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含有根号.我们把满足上述三个条件的二次根式,叫做最简二次根式.
    最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.
    如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;
    含有可化为平方数或平方式的因数或因式的有4、9、a²、(x+y)²、x²+2xy+y²等.
    2.二次根式的乘除法
    (1)积的算术平方根性质:a⋅b=a•b(a≥0,b≥0)
    (2)二次根式的乘法法则:a•b=a⋅b(a≥0,b≥0)
    (3)商的算术平方根的性质:ab=ab(a≥0,b>0)
    (4)二次根式的除法法则:ab=ab(a≥0,b>0)
    规律方法总结:
    在使用性质a•b=a⋅b(a≥0,b≥0)时一定要注意a≥0,b≥0的条件限制,如果a<0,b<0,使用该性质会使二次根式无意义,如(−4)×(−9)≠(﹣4)×(﹣9);同样的在使用二次根式的乘法法则,商的算术平方根和二次根式的除法运算也是如此.
    3.分母有理化
    (1)分母有理化是指把分母中的根号化去.
    分母有理化,分子、分母常常是同时乘二次根式本身(分母只有一项)或与原分母组成平方差公式.
    例如:①1a=1a×a∙a=aa;②1a+b=a−b(a+b)∙(a+b)=a−ba−b.
    (2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:2﹣3的有理化因式可以是2+3,也可以是a(2+3),这里的a可以是任意有理数.
    【典例】
    例1 (2020春•荔湾区月考)下列式子属于最简二次根式的是(  )
    A.0.5 B.12 C.x3(x>0) D.7
    【解答】解:A、0.5=22,不是最简二次根式,故本选项不符合题意;
    B、12=23,不是最简二次根式,故本选项不符合题意;
    C、x3=xx(x>0),不是最简二次根式,故本选项不符合题意;
    D、7是最简二次根式,故本选项符合题意;
    故选:D.
    【方法总结】
    本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
    例2(2020春•文水县期末)等式7−xx+2=7−xx+2成立的条件是 ﹣2<x≤7 .
    【解答】解:由题意得:7−x≥0x+2>0,
    解得:﹣2<x≤7,
    故答案为:﹣2<x≤7.
    【方法总结】
    此题主要考查了二次根式的除法,关键是掌握ab=ab(a≥0,b>0).
    例3 (2020秋•浦东新区月考)计算:2bab5•(−23a2b)÷13ba(a>0).
    【解答】解:原式=−(2b⋅23⋅3)ab5⋅a2b⋅ab
    =−4ba4b5
    =−4b⋅a2b2b
    =−4a2bb.
    【方法总结】
    此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.
    例4 (2020春•安庆期中)阅读材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消掉分子中的根式.
    比如:.
    分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较和的大小可以先将它们分子有理化如下:,.
    因为,所以,.
    再例如,求的最大值、做法如下:
    解:由,可知,而.
    当时,分母有最小值2.所以的最大值是2.
    利用上面的方法,完成下述两题:
    (1)比较和的大小;
    (2)求的最大值.
    【解答】解:(1),

    而,


    (2),,


    当时,分母有最小值,
    有最大值是.
    【方法总结】
    本题主要考查分母有理化,解题的关键是掌握二次根式有意义的条件及二次根式分母有理化的能力.
    【随堂练习】
    1.(2020春•江汉区期末)在根式3,a2,2a3中,是最简二次根式的有 1 个.
    【解答】解:3是最简二次根式;
    a2=2a2,故a2不是最简二次根式;
    2a3=a2a,故2a3不是最简二次根式.
    综上所述,最简二次根式的有1个.
    故答案为:1.

    2.(2020春•西城区校级期中)化简二次根式:43= 233 ,132= 26 .
    【解答】解:43=43=233,
    132=26.
    故答案为:233,26.
    3.(2020秋•普陀区期中)计算:2x3y5•8xy(x>0)= 4xy2 .
    【解答】解:2x3y5•8xy(x>0)
    =2x3y5×8xy
    =16x2y4
    =4xy2.
    故答案为:4xy2.

    4.(2020秋•建平县期末)观察下列一组式的变形过程,然后回答问题:
    例,
    例,,
    (1)  ;   
    (2)请你用含为正整数)的关系式表示上述各式子的变形规律.
    (3)利用上面的结论,求下列式子的值..
    【解答】解:(1);

    (2)

    (3)





    知识点5 二次根式的加减法
    1.同类二次根式
    同类二次根式的定义:
      一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
    合并同类二次根式的方法:
    只合并根式外的因式,即系数相加减,被开方数和根指数不变.
    【知识拓展】同类二次根式
    (1)同类二次根式类似于整式中的同类项.
    (2)几个同类二次根式在没有化简之前,被开方数完全可以互不相同.
    (3)判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.
    2.二次根式的加减法
    (1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    (2)步骤:
    ①如果有括号,根据去括号法则去掉括号.
    ②把不是最简二次根式的二次根式进行化简.
    ③合并被开方数相同的二次根式.
    3.二次根式的混合运算
    (1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:
    ①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.
    ②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.
    (2)二次根式的运算结果要化为最简二次根式.
    (3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    【典例】
    例1(2020秋•鲤城区校级月考)当a= 1 时,最简二次根式a+2与5−2a可以合并.
    【解答】解:∵最简二次根式a+2与5−2a可以合并,
    ∴a+2=5﹣2a,
    解得a=1.
    故答案为:1.
    【方法总结】
    此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
    例2 (2020秋•石鼓区校级月考)计算:(32+24−213)−(18−123).
    【解答】解:原式=42+142−233−142+233=42.
    【方法总结】
    本题主要考查了二次根式的加减运算,准确计算是解题的关键.
    例3 (2020秋•静安区校级期中)计算:8x−2x2+2x29x.
    【解答】解:原式=22x−2x+232x=532x.
    【方法总结】
    本题考查二次根式的加减运算,掌握二次根式的性质以及合并同类二次根式的方法是正确计算的前提.
    【随堂练习】
    1.(2020春•包河区校级期中)若最简二次根式a+12a+5与3b+4a是同类二次根式,求a,b的值.
    【解答】解:∵最简二次根式a+12a+5与3b+4a是同类二次根式,
    ∴a+1=22a+5=3b+4a,
    解得:a=1b=1.
    2.(2020秋•新都区月考)如果最简二次根式3a+8与12−a是同类二次根式,那么3a的值为(  )
    A.6 B.±3 C.32 D.3
    【解答】解:∵最简二次根式3a+8与12−a是同类二次根式,
    ∴3a+8=12﹣a,
    解得:a=1,
    故3a=3,
    故选:D.
    3.(2020秋•未央区期中)计算:18−412+28.
    【解答】解:原式=32−4×22+42
    =32−22+42
    =52.
    4.(2020秋•黄浦区校级期中)计算:12+12+28−3−18.
    【解答】解:原式=23+22+42−3−32
    =3+322.
    知识点6 二次根式化简求值
    二次根式的化简求值
    二次根式的化简求值,一定要先化简再代入求值.
    二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
    【典例】
    例1(2020秋•武侯区校级期中)已知x=56−1,y=56+1.
    (1)计算x+y= 26 ;xy= 5 .
    (2)求x2﹣4xy+y2的值.
    【解答】解:(1)x=56−1=5(6+1)(6−1)(6+1)=6+1,
    y=56−1=5(6−1)(6+1)(6−1)=6−1,
    则x+y=6+1+6−1=26,xy=(6+1)(6−1)=5,
    故答案为:26;5;
    (2)x2﹣4xy+y2
    =x2+2xy+y2﹣6xy
    =(x+y)2﹣6xy
    =24﹣30
    =﹣6.
    【方法总结】
    本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、完全平方公式是解题的关键.
    例2(2020秋•临漳县期中)(1)先化简,再求值:2(a+3)(a−3)−a(a−2)+6,其中a=2−1.
    (2)已知x=2+3,y=2−3,求下列式子的值:x2+y2﹣3xy.
    【解答】解:(1)原式=2(a2﹣3)﹣a2+2a+6
    =2a2﹣6﹣a2+2a+6
    =a2+2a,
    当a=2−1时,原式=(2−1)2+2(2−1)=3﹣22+2−2=5﹣32;
    (2)∵x=2+3,y=2−3,
    ∴x+y=4,xy=(2+3)(2−3)=1,
    则x2+y2﹣3xy=x2+2xy+y2﹣5xy=(x+y)2﹣5xy=16﹣5=11.
    【方法总结】
    本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、完全平方公式是解题的关键.
    【随堂练习】
    1.(2020秋•青羊区校级期中)已知x=23+5,y=23−5,求2x2﹣xy+2y2的值.
    【解答】解:方法1、∵x=23+5=2(3−5)(3+5)(3−5)=3−52,
    y=23−5=2(3+5)(3−5)(3+5)=3+52,
    ∴2x2﹣xy+2y2
    =2×(3−52)2−3−52×3+52+2×(3+52)2
    =2×14−654−9−54+2×14+654
    =7﹣35−1+7+35
    =13.
    方法2、∵x=23+5=2(3−5)(3+5)(3−5)=3−52,
    y=23−5=2(3+5)(3−5)(3+5)=3+52,
    ∴x+y=3,xy=1,
    ∴2x2﹣xy+2y2=2(x+y)2﹣5xy=2×32﹣5×1=13.
    2.(2020秋•蕉城区期中)先化简,再求值:a+1−2a+a2,其中a=2020.
    如图是小亮和小芳的解答过程.

    (1) 小亮 的解法是错误的;
    错误的原因在于未能正确地运用二次根式的性质: a2=|a| ;
    (2)先化简,再求值:a+2a2−6a+9,其中a=﹣2.
    【解答】解:(1)小亮的解法是错误的,
    错误的原因在于未能正确地运用二次根式的性质:a2=|a|,
    故答案为:小亮;a2=|a|;
    (2)原式=a+2(a−3)2=a+2|a﹣3|,
    ∵a=﹣2<3,
    ∴原式=a+2(3﹣a)=a+6﹣2a=6﹣a=8.


    综合运用
    1.(2020春•丛台区校级月考)下列各组二次根式,属于同类二次根式的是(  )
    A.3与18 B.63与28 C.0.5与23 D.12与72
    【解答】解:A、∵18=32,
    ∴3与18不属于同类二次根式;
    B、∵63=37,28=27,
    ∴63与28属于同类二次根式;
    C、∵0.5=12=22,23=63,
    ∴0.5与23不属于同类二次根式;
    D、∵12=23,72=62,
    ∴12与72不属于同类二次根式;
    故选:B.
    2.(2020春•兰陵县期末)若a=2+3,b=2−3,则ab=(  )
    A.1 B.2 C.2 D.22
    【解答】解:∵a=2+3,b=2−3,
    ∴ab=(2+3)(2−3)
    =4﹣3
    =1.
    故选:A.
    3.(2020春•广陵区校级期中)当x >13 时,−11−3x是二次根式.
    解:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可知:﹣(1﹣3x)>0即x>13,
    所以自变量x的取值范围是x>13.
    4.(2020春•微山县期末)计算:(0.5+24)−(18−6).
    【解答】解:原式=22+26−24+6
    =24+36.

    5.(2020春•崇川区校级期末)已知a、b满足b=a+2+−2a−4+4,求3b﹣2a的平方根.
    【解答】解:∵a+2和−2a−4都有意义,
    ∴a+2≥0且﹣2a﹣4≥0,
    解得:a=﹣2,
    故b=4,
    则3b﹣2a=16,
    故3b﹣2a的平方根是:±4.
    6.(2020秋•大同区校级期中)当x的取值范围是不等式组3x−4>01−12x≥0的解,试化简:(|1−2x|)2+x2−6x+9−x.
    【解答】解:3x−4>0①1−12x≥0②,
    解不等式①,得
    x>43;
    解不等式②,得
    x≤2;
    ∴x的取值范围是43<x≤2,
    ∴1﹣2x<0,x﹣3<0,
    ∴(|1−2x|)2+x2−6x+9−x
    =|1﹣2x|+|x﹣3|﹣x
    =2x﹣1﹣x+3﹣x
    =2.
    7.(2020秋•新都区月考)已知:a=3+2,b=3−2,求代数式(a﹣3)(b﹣3)﹣(a2+b2)的值.
    【解答】解:∵a=3+2,b=3−2,
    ∴a+b=3+2+3−2=23,ab=(3+2)(3−2)=3﹣4=﹣1,
    则(a﹣3)(b﹣3)﹣(a2+b2)
    =ab﹣3a﹣3b+9﹣[(a+b)2﹣2ab]
    =ab﹣3(a+b)+9﹣[(a+b)2﹣2ab]
    =﹣1﹣63+9﹣(12+2)
    =﹣1﹣63+9﹣14
    =﹣63−6.
    8.(2020•唐山二模)阅读下列材料,然后回答问题.
    在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:


    以上这种化简的步骤叫做分母有理化.
    (1)化简
    (2)化简.
    (3)化简:.
    【解答】解:(1)
    (2)化简
    (3)化简:




    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布





    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        初二数学人教版春季班 第1讲 二次根式--提高班 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map