![2023年苏科版数学八年级下册《中心对称图形-平行四边形》单元质量检测(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14021401/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年苏科版数学八年级下册《中心对称图形-平行四边形》单元质量检测(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14021401/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年苏科版数学八年级下册《中心对称图形-平行四边形》单元质量检测(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/14021401/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年苏科版数学八年级下册《中心对称图形-平行四边形》单元质量检测(含答案)
展开这是一份2023年苏科版数学八年级下册《中心对称图形-平行四边形》单元质量检测(含答案),共11页。
2023年苏科版数学八年级下册
《中心对称图形-平行四边形》单元质量检测
一 、选择题
1.如图图形中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
3.如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是( )
A.20 B.22 C.29 D.31
4.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )
A.∠A=∠B B.∠C=∠D C.∠B=∠D D.AB=CD
5.对角线相等且互相平分的四边形是( )
A.一般四边形 B.平行四边形 C.矩形 D.菱形
6.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
7.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
A.4个 B.3个 C.2个 D.1个
8.若点A的坐标为(6,3),O为坐标原点,将OA绕点O接顺时针方向旋转90°得到OA′,则点A′的坐标为( )
A(3,6) B(-3,6) C(-3,-6) D(3,-6)
9.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( )
A.(1,1) B.( ,) C.(﹣1,1) D.(﹣,)
10.如图, D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是 AB、AC、CD、BD 的中点,则四边形 EFGH 的周长是( )
A.7 B.8 C.11 D.10
11.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是( )
A.8 B.16 C.8 D.16
12.如图,已知正方形ABCD的边长为2,点E,F分别是BC,CD边上的动点,满足BE=CF.则AE+AF的最小值为( )
A. B.2 C.2+2 D.2
二 、填空题
13.将一个正六边形绕着其中心旋转,至少旋转 度可以和原来的图形重合.
14.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.
15.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为 .
16.如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为 .
17.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为 .
18.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2025米停下,则这个微型机器人停在 点.
三 、作图题
19.如图所示,△ABC在边长为1cm的小正方形组成的网格中.
(1)将△ABC沿y轴正方向向上平移5个单位长度后,得到△A1B1C1,请作出△A1B1C1,并求出A1B1的长度;
(2)再将△A1B1C1绕坐标原点O顺时针旋转180°,得到△A2B2C2,
请作出△A2B2C2,并直接写出点B2的坐标.
四 、解答题
20.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求线段DH的长.
21.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
22.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?
23.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.
(1)证明:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)
24.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.
25.(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.
答案
1.A.
2.D
3.C.
4.C
5.C.
6.B.
7.C.
8.D
9.C
10.C.
11.A.
12.D.
13.答案为:60.
14.答案为:14.
15.答案为:110°.
16.答案为:.
17.答案为:.
18.答案为:B.
19.解:(1)如图所示,△A1B1C1即为所求,A1B1=3(cm).
(2)如图,△A2B2C2即为所求,B2(4,﹣4).
20.解:∵AE为△ABC的角平分线,
∴∠FAH=∠CAH.
∵CH⊥AE,
∴∠AHF=∠AHC=90°.
在△AHF和△AHC中,
∴△AHF≌△AHC(ASA).
∴AF=AC,HF=HC.
∵AC=3,AB=5,
∴AF=AC=3,BF=AB-AF=5-3=2.
∵AD为△ABC的中线,
∴DH是△BCF的中位线.
∴DH=BF=1.
21.证明:(1)如图:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4.
∵∠1=∠3+∠5,∠2=∠4+∠6,
∴∠1=∠2.
∴∠5=∠6.
∵在△ADE与△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA).
∴AE=CF.
(2)∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF.
∴四边形EBFD是平行四边形.
22.证明:(1)∵AO=CO,BO=DO
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四边形ABCD是矩形,
∴OC=OD,
∴∠ODC=54°
∴∠BDF=∠ODC﹣∠FDC=18°.
23.证明:(1)∵AE∥CD,CE∥AB,
∴四边形ADCE是平行四边形,
又∵∠ACB=90°,D是AB的中点,
∴CD=AB=BD=AD,
∴平行四边形ADCE是菱形;
(2)解:过点D作DF⊥CE,垂足为点F,如图所示:
DF即为菱形ADCE的高,
∵∠B=60°,CD=BD,
∴△BCD是等边三角形,
∴∠BDC=∠BCD=60°,CD=BC=6,
∵CE∥AB,
∴∠DCE=∠BDC=60°,
又∵CD=BC=6,
∴在Rt△CDF中,DF=3.
24.证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴△BOE≌△AOF(AAS).
∴OE=OF.
25.解:(1)△ABC与△AEG面积相等.
理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∵∠BAE+∠CAG+∠BAC+∠EAG=360°,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,
在△ACM和△AGN中,
,
∴△ACM≌△AGN,
∴CM=GN,
∵S△ABC=AB•CM,S△AEG=AE•GN,
∴S△ABC=S△AEG,