初中数学苏科版八年级下册第9章 中心对称图形——平行四边形综合与测试单元测试同步测试题
展开第9章 中心对称图形——平行四边形
1.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是( )
A.30° B.36° C.45° D.60°
2.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是( )
A.①②④ B.①②③ C.②③④ D.①②③④
3. 如图,在正六边形ABCDEF中,AC=2,则它的边长是( )
A.1 B. C. D.2
4. 矩形具有而平行四边形不一定具有的性质是( )
A.对边相等 B.对角相等
C.对角线相等 D.对角线互相平分
5.下列事件中,属于旋转运动的是( )
A.小明向北走了4米 B.时针转动
C.电梯从1楼到12楼 D.一物体从高空坠下
6.顺次连接矩形四边中点得到的四边形一定是( )
A.正方形 B.矩形 C.菱形 D.平行四边形
7. 如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )B
A.20 B.16 C.12 D.8
8.下列说法不正确的是( )
A.有两组对边分别平行的四边形是平行四边形 B.平行四边形的对角线互相平分
C.平行四边形的对角互补,邻角相等 D.平行四边形的对边平行且相等
9.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )
A.3 B.4 C.5 D.6
10. 如图,足球图片正中的黑色正五边形的内角和是( )
A.180° B.360° C.540° D.720°
11.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当AB=2,∠B=60°时,AC的长是( )
A. B. C.2 D.2
12.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= .
13. 如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .
14.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B= 度.
15.▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB= .
16.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是 (只需添加一个即可)
17.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是 .
18. 如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.
19.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.
20. 如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.
21.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.
(1)在图中找出与△ABE相似的三角形,并说明理由;
(2)若AG=AH,求证:四边形ABCD是菱形.
22.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
23.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.
24.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.
求证:(1)BG=DE;(2)BG⊥DE.
答案
1. B
2. D
3. D
4. C
5. B
6. C
7. B
8. C
9. B
10. C
11. D
12. 115°
13. 6
14. 30
15. 9
16. ∠ABC=90°或AC=BD.
17. .
18. 解:在▱ABCD中,
AD=BC,∠A=∠C,
∵E、F分别是边BC、AD的中点,
∴AF=CE,
在△ABF与△CDE中,
∴△ABF≌△CDE(SAS)
∴∠ABF=∠CDE
19.
证明:∵矩形ABCD中,AB∥DC,
∴∠DCE=∠CEB,
∵∠DCE=∠BAF,
∴∠CEB=∠BAF,
∴FA∥CE,
又矩形ABCD中,
FC∥AE,
∴四边形AECF是平行四边形
20. 证明:∵AB∥DE,AC∥DF,
∴∠B=∠DEF,∠ACB=∠F.
∵BE=CF,
∴BE+CE=CF+CE,
∴BC=EF.
在△ABC和△DEF中,,
∴△ABC≌△DEF(ASA),
∴AB=DE.
又∵AB∥DE,
∴四边形ABED是平行四边形.
21. 解:(1)△ABE∽△ADF.
理由如下:∵AE⊥BC于E,AF⊥CD于F,
∴∠AEB=∠AFD=90°.
∵四边形ABCD是平行四边形,
∴∠ABE=∠ADF.
∴△ABE∽△ADF.
(2)证明:∵AG=AH,
∴∠AGH=∠AHG.
∴∠AGB=∠AHD.
∵△ABE∽△ADF,
∴∠BAG=∠DAH.
∴∠BAG≌∠DAH.
∴AB=AD,
∵四边形ABCD是平行四边形,
AB=AD,
∴平行四边形ABCD是菱形.
22. 证明:(1)在平行四边形ABCD 中,AB∥CD,AB=CD
∵E、F分别为AB、CD的中点
∴DF=DC,BE=AB
∴DF∥BE,DF=BE
∴四边形DEBF为平行四边形,
∴DE∥BF;
(2)∵AG∥BD,
∴∠G=∠DBC=90°,
∴△DBC 为直角三角形,
又∵F为边CD的中点,
∴BF=DC=DF,
又∵四边形DEBF为平行四边形,
∴四边形DEBF是菱形.
23. 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∵AF=CE,
∴四边形AECF是平行四边形.
24. 证明:(1)∵四边形ABCD和CEFG为正方形,
∴BC=DC,CG=CE,∠BCD=∠GCE=90°,
∴∠BCD+∠DCG=∠GCE+∠DCG,
即:∠BCG=∠DCE,
在△BCG和△DCE中,,
∴△BCG≌△DCE(SAS),
∴BG=DE,
(2)∵△BCG≌△DCE,
∴∠GBC=∠EDC,
∵∠GBC+∠BOC=90°,∠BOC=∠DOG,
∴∠DOG+∠EDC=90°,
∴BG⊥DE.
初中数学苏科版八年级下册9.3 平行四边形单元测试课后测评: 这是一份初中数学苏科版八年级下册9.3 平行四边形单元测试课后测评,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级下册9.3 平行四边形随堂练习题: 这是一份初中数学苏科版八年级下册9.3 平行四边形随堂练习题,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学八年级下册9.3 平行四边形单元测试练习: 这是一份数学八年级下册9.3 平行四边形单元测试练习,共9页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。