山西省陵川县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开陵川县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. “新冠病毒”肆虐,全国上下齐心协力、众志成城,坚决打赢“新冠肺炎”阻击战,下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
5. 下列等式中,不成立的是( )
A. B.
C. D.
6. 已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( )
A. 75° B. 90° C. 105° D. 120°或20°
7. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和b B. a
C. b D. 不能确定
8. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6 D.
9. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
10. 如图,若x为正整数,则表示分式的值落在( )
A. 线①处 B. 线②处 C. 线③处 D. 线④处
二.填空题(共5题,总计 15分)
11. 若是完全平方式,则______.
12. 计算÷=__________.
13. 若△ABC≌△DEF,△ABC的周长为100,AB=30,DF=25,则BC为 ________.
14. 如图,在平面直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°,则点C坐标为_______.
15. 如图,点P关于OA、OB的对称点分别是H、G,线段HG交OP于点C,∠AOB=30°,OP=10,则HG=_____.
三.解答题(共8题,总计75分)
16. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
17. 解分式方程:
18. 如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;
(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;
(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.
19. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
20. 在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“”变形成或等形式,
问题:若x满足,求的值.
我们可以作如下解答;设,,则,
即:.
所以.
请根据你对上述内容的理解,解答下列问题:
(1)若x满足,求的值.
(2)若x满足,求的值.
22. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
23. 如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.
(1)_____________.(用含t的式子表示)
(2)当t何值时,?
(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.
陵川县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A选项,图标不符合轴对称图形的定义,故不符合题意;
B选项,图标不符合轴对称图形的定义,故不符合题意;
C选项,图标符合轴对称图形的定义,故符合题意;
D选项,图标不符合轴对称图形的定义,故不符合题意;
故选:C.
2.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
2.【答案】:D
【解析】:A. ,不符合题意;
B. ,不符合题意;
C. 不能继续计算,不符合题意;
D. ,符合题意;
故选:D.
4.【答案】:B
【解析】:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
【画龙点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
5.【答案】:C
【解析】:A、,故A不符合题意.
B、,故B不符合题意.
C、,故C符合题意.
D、,故D不符合题意.
故选:C.
6.【答案】:D
【解析】:解:设两内角的度数为x、4x,
当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;
当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;
因此等腰三角形的顶角度数为20°或120°.
故选:D.
7.【答案】:C
【解析】:
,
则这个代数式的值与字母b的取值无关,
故选:C.
8.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
9.【答案】:D
【解析】:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
【画龙点睛】本题考查了正方形、矩形的知识;解题的关键是熟练掌握正方形、矩形的性质,从而完成求解.
10.【答案】:B
【解析】:原式,
∵为正整数,
∴,
∴原式可化为:,
∵分子比分母小1,且为正整数,
∴是真分数,且最小值是,
即,,
∴表示这个数的点落在线②处,
故选:B.
二. 填空题
11.【答案】: -3或9
【解析】:解:∵是完全平方式,
∴m−3=±6,
解得:m=-3或9.
故答案为:-3或9.
12.【答案】:-2
【解析】:解:原式==-2,
故答案为:-2.
13.【答案】:45
【解析】:解:,
,
的周长为100,
.
故答案为:45.
14.【答案】: (7,4)
【解析】:解:作CD⊥x轴于点D,则∠CDA=90°,
∵A(4,0),B(0,3),
∴
是等腰直角三角形,∠BAC=90°,
又∵∠BAD+∠ABO=90°,
∴∠ABO=∠CAD,
∠BAD+∠CAD=90°,
在△BOA和△ADC中,
∴△BOA≌△ADC(AAS),
∴BO=AD=3,OA=DC=4,
∴点C的坐标为(7,4);
故答案为:(7,4)
15.【答案】: 10
【解析】:解:连接OH,OG.
∵点P关于OA、OB的对称点分别是H、G,
∴OP=OH,OP=OG,∠AOP=∠AOH,∠POB=∠BOG,
∵∠AOB=30°,
∴∠AOP+∠BOP=30°,
∴∠HOG=2∠AOP+2∠BOP=60°,
∴△OGH是等边三角形,
∴GH=OH=OP=10,
故答案为10.
三.解答题
16【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
17【答案】:
无解
【解析】:
解:去分母得:4+x2-1=x2-2x+1,
解得:x=-1,
经检验x=-1是增根,分式方程无解.
【画龙点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
18【答案】:
(1)见解析;(2)见解析;(3)见解析.
【解析】:
解:(1)如图①所示,线段MN是所求作的线段,
(2)如图②所示,线段PQ是所求作的线段,
(3)如图③所示,是所求作的三角形,
19【答案】:
(1)见解析;(2).
【解析】:
解:(1)∵,
∴.
∵是边上的中线,
∴,
∴.
(2)∵,
∴,
∴.
∵,
∴.
20【答案】:
(1)见解析;(2)见解析
【解析】:
(1)证明:连接BD,
∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=×120°=60°,
∵AD=AB,
∴△ABD是等边三角形;
(2)证明:∵△ABD是等边三角形,
∴∠ABD=∠ADB=60°,BD=AD
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE与△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF.
21【答案】:
(1)120 (2)2021
【解析】:
【小问1详解】
设,,
则,
所以,
【小问2详解】
设,,
则
所以,
22【答案】:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
【解析】:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
【画龙点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.
23【答案】:
(1);(2);(3)存在,或,理由见解析.
【解析】:
解:(1)由题意得,,
,
故答案为:;
(2)若
则
即
当时,;
(3)存在,理由如下:
当时,
;
当时,
综上所述,当或时,与全等.
山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省平定县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省平定县2022-2023学年八年级(上)数学期末模拟测试(解析版),共18页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省宁武县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省宁武县2022-2023学年八年级(上)数学期末模拟测试(解析版),共18页。试卷主要包含了选择题等内容,欢迎下载使用。